
A Brief History of Just-In-Time

JOHN AYCOCK

University of Calgary

Software systems have been using “just-in-time” compilation (JIT) techniques since the
1960s. Broadly, JIT compilation includes any translation performed dynamically, after a
program has started execution. We examine the motivation behind JIT compilation and
constraints imposed on JIT compilation systems, and present a classification scheme for
such systems. This classification emerges as we survey forty years of JIT work, from
1960–2000.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors;
K.2 [History of Computing]: Software

General Terms: Languages, Performance

Additional Key Words and Phrases: Just-in-time compilation, dynamic compilation

1. INTRODUCTION

Those who cannot remember the past are con-
demned to repeat it.

George Santayana, 1863–1952 [Bartlett 1992]

This oft-quoted line is all too applicable
in computer science. Ideas are generated,
explored, set aside—only to be reinvented
years later. Such is the case with what
is now called “just-in-time” (JIT) or dy-
namic compilation, which refers to trans-
lation that occurs after a program begins
execution.

Strictly speaking, JIT compilation sys-
tems (“JIT systems” for short) are com-
pletely unnecessary. They are only a
means to improve the time and space ef-
ficiency of programs. After all, the central
problem JIT systems address is a solved
one: translating programming languages

This work was supported in part by a grant from the National Science and Engineering Research Council of
Canada.
Author’s address: Department of Computer Science, University of Calgary, 2500 University Dr. N. W., Calgary,
Alta., Canada T2N 1N4; email: aycock@cpsc.ucalgary.ca.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires
prior specific permission and/or a fee.
c©2003 ACM 0360-0300/03/0600-0097 $5.00

into a form that is executable on a target
platform.

What is translated? The scope and na-
ture of programming languages that re-
quire translation into executable form
covers a wide spectrum. Traditional pro-
gramming languages like Ada, C, and
Java are included, as well as little lan-
guages [Bentley 1988] such as regular
expressions.

Traditionally, there are two approaches
to translation: compilation and interpreta-
tion. Compilation translates one language
into another—C to assembly language, for
example—with the implication that the
translated form will be more amenable
to later execution, possibly after further
compilation stages. Interpretation elimi-
nates these intermediate steps, perform-
ing the same analyses as compilation, but
performing execution immediately.

ACM Computing Surveys, Vol. 35, No. 2, June 2003, pp. 97–113.

