
Data Prefetch Mechanisms
STEVEN P. VANDERWIEL

IBM Server Group

AND

DAVID J. LILJA

University of Minnesota

The expanding gap between microprocessor and DRAM performance has
necessitated the use of increasingly aggressive techniques designed to reduce or
hide the latency of main memory access. Although large cache hierarchies have
proven to be effective in reducing this latency for the most frequently used data, it
is still not uncommon for many programs to spend more than half their run times
stalled on memory requests. Data prefetching has been proposed as a technique for
hiding the access latency of data referencing patterns that defeat caching
strategies. Rather than waiting for a cache miss to initiate a memory fetch, data
prefetching anticipates such misses and issues a fetch to the memory system in
advance of the actual memory reference. To be effective, prefetching must be
implemented in such a way that prefetches are timely, useful, and introduce little
overhead. Secondary effects such as cache pollution and increased memory
bandwidth requirements must also be taken into consideration. Despite these
obstacles, prefetching has the potential to significantly improve overall program
execution time by overlapping computation with memory accesses. Prefetching
strategies are diverse, and no single strategy has yet been proposed that provides
optimal performance. The following survey examines several alternative
approaches, and discusses the design tradeoffs involved when implementing a data
prefetch strategy.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—
Cache memories; B.3 [Hardware]: Memory Structures

General Terms: Design, Performance

Additional Key Words and Phrases: Memory latency, prefetching

This work was supported in part by National Science Foundation grants MIP-9610379, CDA-9502979,
CDA-9414015, the Minnesota Supercomputing Institute, and the University of Minnesota-IBM Shared
University Research Project. Steve VanderWiel was partially supported by an IBM Graduate Research
Fellowship during the preparation of this work.
Authors’ addresses: S. P. VanderWiel, System Architecture, Performance & Design, IBM Server Group,
3605 Highway 52, North Rochester, MN 55901; email: svw@us.ibm.com; D. J. Lilja, Dept. of Electrical &
Computer Engineering, University of Minnesota, 200 Union St. SE, Minneapolis, MN 55455; email:
lilja@ece.umn.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and / or a fee.
© 2001 ACM 0360-0300/00/0600–0174 $5.00

ACM Computing Surveys, Vol. 32, No. 2, June 2000

B
IB

LI
O

TH
E

Q
U

E

D
U

 C
E

R
IS

T

