

Available at www.ComputerScienceWeb.com

Information Processing Letters 85 (2003) 307-315

Information Processing Letters

www.elsevier.com/locate/ipl

A combinatorial algorithm for MAX CSP

Mayur Datar¹, Tomás Feder, Aristides Gionis^{*,1}, Rajeev Motwani², Rina Panigrahy

Department of Computer Science, Gates 4B, Stanford University, Stanford, CA 94305-9045, USA

Received 13 December 2001; received in revised form 13 September 2002

Communicated by S. Albers

Abstract

We consider the problem MAX CSP over multi-valued domains with variables ranging over sets of size $s_i \leq s$ and constraints involving $k_j \leq k$ variables. We study two algorithms with approximation ratios *A* and *B*, respectively, so we obtain a solution with approximation ratio max(*A*, *B*).

The first algorithm is based on the linear programming algorithm of Serna, Trevisan, and Xhafa [Proc. 15th Annual Symp. on Theoret. Aspects of Comput. Sci., 1998, pp. 488–498] and gives ratio A which is bounded below by s^{1-k} . For k = 2, our bound in terms of the individual set sizes is the minimum over all constraints involving two variables of $(1/2\sqrt{s_1} + 1/2\sqrt{s_2})^2$, where s_1 and s_2 are the set sizes for the two variables.

We then give a simple combinatorial algorithm which has approximation ratio *B*, with B > A/e. The bound is greater than s^{1-k}/e in general, and greater than $s^{1-k}(1-(s-1)/2(k-1))$ for $s \le k-1$, thus close to the s^{1-k} linear programming bound for large *k*. For k = 2, the bound is $\frac{4}{9}$ if s = 2, 1/2(s-1) if $s \ge 3$, and in general greater than the minimum of $1/4s_1 + 1/4s_2$ over constraints with set sizes s_1 and s_2 , thus within a factor of two of the linear programming bound.

For the case of k = 2 and s = 2 we prove an integrality gap of $\frac{4}{9}(1 + O(n^{-1/2}))$. This shows that our analysis is tight for any method that uses the linear programming upper bound.

© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Algorithmical approximation; Analysis of algorithms; Combinatorial problems; Databases; Design of algorithms; Graph algorithms

^{*} Corresponding author.

E-mail addresses: datar@cs.stanford.edu (M. Datar), tomas@theory.stanford.edu (T. Feder), gionis@cs.stanford.edu (A. Gionis), rajeev@cs.stanford.edu (R. Motwani),

1. Introduction

We consider the problem MAX CSP (Maximization Constraint Satisfaction Problem) over multi-valued domains [12]. An instance of this problem consists of *n* variables x_i , where each variable takes values from a corresponding set S_i . Each set S_i has $s_i = |S_i|$ values, and we define *s* to be the largest set size, i.e., max_i s_i . The problem statement also specifies a set of *m* constraints, where each constraint is defined in the following way: For the *j*th constraint, a set of indices $A_j \subseteq [n]$ specifies which variables

rinap@cisco.com (R. Panigrahy).

¹ Supported by NSF Grant IIS-0118173 and a Microsoft Research Graduate Fellowship.

 $^{^2}$ Supported by NSF Grant IIS-0118173 and an Okawa Foundation Research Grant.

^{0020-0190/02/\$ –} see front matter @ 2002 Elsevier Science B.V. All rights reserved. PII: S0020-0190(02)00435-0