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Abstract

We consider the problemMAX CSP over multi-valued domains with variables ranging over sets of sizesi � s and constraints
involving kj � k variables. We study two algorithms with approximation ratiosA andB, respectively, so we obtain a solution
with approximation ratio max(A,B).

The first algorithm is based on the linear programming algorithm of Serna, Trevisan, and Xhafa [Proc. 15th Annual Symp.
on Theoret. Aspects of Comput. Sci., 1998, pp. 488–498] and gives ratioA which is bounded below bys1−k . For k = 2, our
bound in terms of the individual set sizes is the minimum over all constraints involving two variables of(1/2

√
s1 + 1/2

√
s2)

2,
wheres1 ands2 are the set sizes for the two variables.

We then give a simple combinatorial algorithm which has approximation ratioB, with B > A/e. The bound is greater than
s1−k/e in general, and greater thans1−k(1− (s − 1)/2(k− 1)) for s � k− 1, thus close to thes1−k linear programming bound
for largek. Fork = 2, the bound is49 if s = 2, 1/2(s − 1) if s � 3, and in general greater than the minimum of 1/4s1 + 1/4s2
over constraints with set sizess1 ands2, thus within a factor of two of the linear programming bound.

For the case ofk = 2 ands = 2 we prove an integrality gap of49(1+ O(n−1/2)). This shows that our analysis is tight for any
method that uses the linear programming upper bound.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider the problemMAX CSP (Maximization
Constraint Satisfaction Problem) over multi-valued
domains [12]. An instance of this problem consists
of n variablesxi , where each variable takes values
from a corresponding setSi . Each setSi hassi = |Si |
values, and we defines to be the largest set size,
i.e., maxi si . The problem statement also specifies
a set of m constraints, where each constraint is
defined in the following way: For thej th constraint,
a set of indicesAj ⊆ [n] specifies which variables
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