
582 IEEE COMMUNICATIONS 1.F.lTFRS. VOL. X, NO Y. SEPTFMBER 20111 

A Batch Processing Constant Modulus Algorithm 
Changjiang Xu and Jian Li, Senior Meinber; IEEE 

Abslracl-We present a batch processing constant modulus al- 
gorithm (BP-CMA) derived by a nonlinear optimiration approach 
to minimizing the constant modulus (CM) criterion. BP-CMA is a 
line search iteration algorithm. The search direction may be taken 
as deepest descent direction or Newton direction. The exact step 
size is ohtained from the roots of a cubic equation. The initial value 
is calculated by using the eigenvecton of the signal suhspace. The 
BP-CMA with the Newton direction has a fast convergence rate 
and can converge to the minima of the CM criterion after a few 
iterations. 

Index Terms-Batch processing algorithm, constant modulus al- 
gorithm, signal-subspace. 

1. INTRODUCTION 

INIMIZATION of the constant modulus (CM) criterion M has been widely studied for hlind Channel equaliration 
and hlind source separation (see [ I l  and the references therein). 
The most popular way to minimize the CM criterion is to use a 
stochastic gradient büsed constant modulus algorithm (CMA). 
However, the CMA has a slow convergence rate and is sensitive 
to the selection of the step size and initial value. 

In this letter, we present a hatch processing CMA (BP-CMA) 
denved hy using a nonlinear optimization approach. BP-CMA 
is a line search iteration algorithm, which involves three fac- 
tors: search direction, step sire and initial value. The two widely 
used search directions are the steepest descent direction and the 
Newton direction. We will focus on determining the step size 
and initial value. The step size is exactly obtained from the roots 
of a cuhic equation. The initial value is calculated hy using the 
eigenvectors of signal suhspace. BP-CMA converges quickly. 
The BP-CMA with the Newton direction can converge to the 
minima of CM criterion after a few iterations. Note that the 
Newton type method hased CMA has heen considered earlier 
(see, e.g., [21). However, the step sire and initial value issues 
were not addressed. 

11. CONSTANT MODULUS ESTIMATORS 

Consider a generic data model given hy 

h. 
y(n) = C h e s k ( r i , )  + w(n) kf Hs(71,) + w(u) ( 1 )  

h = l  
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where s ( n )  = [ s i ( r i )  .s~\-(ri,)]' is the vector of I< input 
signals ( K  known). y(ri,) is the output vector of diinension 1'. iih 
are the length-1' Channel vectors, H = [hi 
K chünnel matrix, and w(71) i s  a noise vector. The hypotheses 
on the model are given as follows. 

s k ( n )  are zero-mean i.i.d. suh-Gaussian sequences 
with variance E ( l ~ i , ( n ) 1 ~ }  = O:, Le.. the kurtosis 

I E { . s ~ ( ~ ) ~ } I ~  < O, and if .sh(' i i , )  are complex-valued, 
E{ s k  (r i , j2} = (1, which means that they are circularly 
symmetric. 

H2) The noise w(ii,) is a zero-mean Gaussian vector 
with covariance matrix u ~ . I r 7 .  Moreover, if w(u) i s  
complex-valued. then it is also circularly syinmerric. 

H3) The Channel matrix H i s  of full column rank. 
Let a length-P vector g denote a linear estimator and z (  r i )  = 

g"y(ri,) he the output of the estimator. The CM esrimator we 
consider minimizeï the following CM criterion: 

H I )  

K(S~.(7i,)) = ~ { ~ , S k ( ' I l ~ j ~ ' ~ }  - Z E ~ { ~ . S k ( 1 i , j ~ ~ }  ~ 

g,.,,, = ;i,rg iiiiii . / ( g )  (2) 

where . l ( g )  = E{(lz('ri,)12 ~ -O2} is the CM criterion and -/ is  
a positive design parameter known as the dispersion constant. 

Propositinr, 1: The extremes of the function . J (g)  are within 
the signal subspaçe spanned hy the column vectors of Channel 
matrix H. 

Prnpositiuri 2: In the ahsence of noise (i.e.. u , ,  = I l )  or when 
the columns of the Channel matrix are orthogonal to edch other 
(i.e., hHH = <?II,-. (Y > O), the minima of the function . I ( g )  
satisfy the zero-forcing (ZF) conditions. 

Remarks: Proposition I was estahlished in [3]. Proposition 2 
was estüblished in 141, 151. Proposition 2 shows that in these two 
special cases. the CM estimator is equivalent to a ZF estiinator. 

111. BATCH PROCESSING CMA 

In this section, we present Our BP-CMA derived hy a line 
search iteration algorithm. In the line search strategy, the algo- 
rithm chooses a direction p, and searches along this dircction 
from the current iteration to the next iteration with a lower value 
of the cost functioii. The iteration is giveii by (see 161) 

g,+ 1 = g,, + I",P, ( 3 )  

where the positive scalar / i , j  is the step sire, which can be 
found by solving the following one-dimensional minimiration 
prohlem: 

1 1 ,  = xp,uiiiil,>[l.l(g; + lip,).  (4) 

The effectiveness of a line search method depends on the appro- 
priate choices of bath the direction p, and the step sire II,,. Using 
a good initial valne grl can improve the steady-state performance 


