Order N° 07/2015-D/INF:

PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA Ministry of Higher Education and Scientific Research University of Science and Technology Houari-Boumediene

Faculty of Electronic and Computer Science



#### THESIS

Presented to obtain the degree of DOCTOR IN SCIENCE

In : COMPUTER SCIENCE

**Specialty** : Computer science

**By** : LASLA Noureddine

Subject

#### Toward an Efficient Localization System for Wireless Sensor Networks

Publicly defended on 13/07/2015, in front of a jury composed of:

| Mr.  | A. AISSANI | Professor | USTHB/FEI | President         |
|------|------------|-----------|-----------|-------------------|
| Mr.  | N. BADACHE | Professor | USTHB/FEI | Thesis Supervisor |
| Mme. | N. GHARBI  | Professor | USTHB/FEI | Reviewer 1        |
| Mr.  | W. HIDOUCI | MCA       | E.S.I     | Reviewer 2        |
| Mr.  | A. BACHIR  | MCA       | U.BISKRA  | Reviewer 3        |
| Mr.  | M. AISSANI | MCA       | E.M.P     | Reviewer 4        |
| Mr.  | Y. CHALLAL | MCA       | E.S.I     | Guest 1           |

# Dedication

I dedicate this work to... my dearest *parents*; my *brother* and *sisters*; my beloved *wife*; my lovely daughter  $SAF\hat{A}$ .

Noureddine.

## Acknowledgements

First of all, I must thank ALLAH, for giving me the ability, strength, health, and perseverance necessary to complete this work. All praise is due to Allah, the Lord of the Worlds. Peace and blessings be upon our prophet Mohammed.

I would like to gratefully thank my supervisor Prof. Nadjib Badache, for his assistance during all my research project, for the facilities and the favorable conditions he provided for me and for our research team at the research center CERIST, which allowed us to develop our skills as a scientists in the best way and especially in wireless sensor network technology.

I wish to deeply thank Prof. Mohammed Younis for his valuable help, his interest in my work, for being my host during my visits to his laboratory ESNet at the university of UMBC, USA, and for all the facilities he provided and advices he gave.

I wish to thank Dr. Adlen Ksentini for his help, for being my host during my visits to INRIA Dionysos lab at the university of Rennes1, France.

A very special thanks to my dear friend Abdelraouf Ouadjaout, for his support and help during all my post-graduation studies and researches.

Many thanks are due to the chiefs of our division, Mrs and Mme Nouali, for their support and help, as well as my colleagues at the lab, especially Miloud Bagaa, Abdelouahid Derhab, Mohammed-Amine Kafi, Doudou Messaoud, Lyes Khaladi, Cherif Zizoua and Djamel Djenouri.

I would also thank Prof. Hassen Belbachir for the valuable discussions we got about the mathematical analysis and for his helpful advice and comments.

Finally, I express my deep gratitude to my parents and my wife for being understanding, and for their encouragement and support.

### Abstract

Localization or geo-location is a fundamental service required by many wireless sensor networks (WSN) applications. In fact, for the sensed data to be considered, they need to be correlated to where they are collected from. In addition, for some network services such as geographic routing or coverage and for some network maintenance requirements, it is important for the location of the individual sensors to be known. Therefore, multiple work has been performed in order to provide the location information of individual sensors, and are broadly classified into range-based and range-free solutions. The range-based schemes work by measuring an accurate point-to-point distance or angle between two communicating nodes and generally require an additional ranging hardware to be embedded into each sensor node. The range-free solutions, however, are cost effective as they only use the proximity or connectivity information inferred from the radio communication. Although the range-based approach is supposed to be more efficient in terms of accuracy, the limited computation, the constrained cost and the weak signal propagation quality in WSN, make it less effective and less appreciated. Therefore, we focused in the thesis on the range-free approach, especially on a technique based on the calculation of residence areas called area-based. This technique is deemed effective in applications where knowing the exact position of the sensor nodes is not a must. After motivating and arguing the choice of this technique, our goal is to improve its localization efficiency.

The existing area-based solutions suffer from, either, a lack of efficiency or high cost engendered by the number of reference nodes (nodes with positions are known in advance) required for the calculation of the residence areas, or both. In our first contribution, we tried to propose a new localization algorithm that introduces a new way to determine the residence area of each sensor node, using a relatively small number of reference nodes, and based only on simple comparisons of signal strength. In order to demonstrate the performance of our solution, we evaluated our system based on a mathematical analysis, simulations and experiments on a real sensor network. The results of the three analysis have shown the effectiveness and the superiority of our algorithm over existing schemes.

In this thesis, we also conducted a theoretical study on the placement of reference nodes for area-based approach. Since sensors' residence areas are determined based on the positions and the number of reference nodes, so it is important to reduce their count while preserving an acceptable location accuracy. In this study, we determined the optimal placement model for maximum accuracy while minimizing the number of reference nodes. We plan to extend this study, in our future work, in order to take into account other area-based approaches.

The last contribution was devoted to the implementation of our localization algorithm for solving a well-known problem in wireless sensor networks which is the coverage problem. This problem consists in engaging only necessary nodes ensuring complete coverage of the monitored area, while switching the other nodes into sleep mode in order to save their energies, and extended the overall network lifetime. As the coverage is based on the knowledge of the location of each individual sensor, and because this information is often imprecise, the full coverage can not be guaranteed. For this, we use our algorithm which allows to provide accurate information about the maximum error bound, to propose a new distributed coverage algorithm ensuring complete coverage even in the presence of inaccurate location estimate.

# Contents

| 1                                                 | Wir                     | eless S                | Sensor Network and Localization                                  | 12 |  |  |  |
|---------------------------------------------------|-------------------------|------------------------|------------------------------------------------------------------|----|--|--|--|
|                                                   | 1.1                     | Wirele                 | ess Sensor Network: characteristics and localization requirement | 13 |  |  |  |
|                                                   | 1.2                     | Locali                 | zation System: an overview                                       | 15 |  |  |  |
|                                                   | 1.3                     | .3 Range-based         |                                                                  |    |  |  |  |
|                                                   |                         | 1.3.1                  | ТоА                                                              | 18 |  |  |  |
|                                                   |                         | 1.3.2                  | ТДоА                                                             | 20 |  |  |  |
|                                                   |                         | 1.3.3                  | AoA                                                              | 22 |  |  |  |
|                                                   |                         | 1.3.4                  | RSS                                                              | 22 |  |  |  |
|                                                   | 1.4                     | Range                  | -free                                                            | 25 |  |  |  |
|                                                   |                         | 1.4.1                  | Hop-based                                                        | 26 |  |  |  |
|                                                   |                         | 1.4.2                  | Area-based                                                       | 28 |  |  |  |
|                                                   | 1.5                     | Concl                  | usion                                                            | 29 |  |  |  |
| 2 Half Symmetric Lens (HSL) localization Approach |                         |                        |                                                                  |    |  |  |  |
|                                                   | 2.1                     | Motiv                  | ation                                                            | 32 |  |  |  |
|                                                   |                         | 2.1.1                  | Why area-based approach?                                         | 32 |  |  |  |
|                                                   |                         | 2.1.2                  | Why a new area-based algorithm?                                  | 35 |  |  |  |
|                                                   | 2.2                     | Related works          |                                                                  |    |  |  |  |
|                                                   |                         | 2.2.1                  | Triangle based Algorithms                                        | 37 |  |  |  |
|                                                   |                         | 2.2.2                  | Ring based Algorithms                                            | 37 |  |  |  |
|                                                   |                         | 2.2.3                  | Circle based Algorithms                                          | 38 |  |  |  |
|                                                   | 2.3                     | HSL-based Localization |                                                                  |    |  |  |  |
|                                                   |                         | 2.3.1                  | Approach Overview                                                | 39 |  |  |  |
|                                                   |                         | 2.3.2                  | Non-localizable Node Problem                                     | 40 |  |  |  |
|                                                   |                         | 2.3.3                  | Algorithm Description                                            | 41 |  |  |  |
|                                                   |                         | 2.3.4                  | Estimating Coordinates                                           | 43 |  |  |  |
|                                                   | 2.4 Grid Scan Algorithm |                        | Scan Algorithm                                                   | 44 |  |  |  |
|                                                   |                         | 2.4.1                  | Grid Scan Algorithm Performance                                  | 46 |  |  |  |

|          | 2.5   | Conclusion                                                  | 47  |
|----------|-------|-------------------------------------------------------------|-----|
| 3        | Per   | formance Analysis of HSL                                    | 48  |
|          | 3.1   | Theoretical Analysis                                        | 49  |
|          |       | 3.1.1 Expected Location Uncertainty for PIT                 | 50  |
|          |       | 3.1.2 Expected Location Uncertainty for HSL                 | 53  |
|          |       | 3.1.3 Comparison between HSL and PIT                        | 57  |
|          | 3.2   | Simulation Experiments                                      | 60  |
|          |       | 3.2.1 Ratio of Localizable Nodes                            | 61  |
|          |       | 3.2.2 Estimation Error                                      | 62  |
|          | 3.3   | Prototype-based Validation                                  | 69  |
|          | 3.4   | Conclusion                                                  | 72  |
| 4        | On    | Optimal Anchor Placement for Circle-based Localization      | 73  |
|          | 4.1   | Introduction                                                | 74  |
|          | 4.2   | Problem formulation and analysis                            | 74  |
|          |       | 4.2.1 Minimizing the Average Residence Area                 | 75  |
|          |       | 4.2.2 Circle-based Localization Algorithms: reminder        | 77  |
|          |       | 4.2.3 Deterministic Anchors Deployment                      | 78  |
|          | 4.3   | Accuracy under Two-Anchor Coverage                          | 78  |
|          |       | 4.3.1 Four-Subdivisions Analysis                            | 80  |
|          |       | 4.3.2 Optimal Anchor Placement                              | 82  |
|          | 4.4   | Evaluation                                                  | 84  |
|          | 4.5   | Related works                                               | 85  |
|          | 4.6   | Conclusions                                                 | 87  |
| <b>5</b> | HSI   | L Application: coverage                                     | 88  |
|          | 5.1   | Introduction                                                | 89  |
|          | 5.2   | Related Work                                                | 90  |
|          | 5.3   | Problem and System Model                                    | 91  |
|          |       | 5.3.1 Effect of Localization Error on Coverage              | 91  |
|          |       | 5.3.2 System Model                                          | 92  |
|          | 5.4   | Mitigation localization errors                              | 93  |
|          |       | 5.4.1 Estimating Maximum Localization Error                 | 93  |
|          |       | 5.4.2 Detailed CIP Operation                                | 94  |
|          | 5.5   | Performance evaluation                                      | 97  |
|          |       | 5.5.1 Fraction of area covered                              | 98  |
|          |       | 5.5.2 The percentage of activated sensors                   | 98  |
|          |       | 5.5.3 Comparing the methods for adjusting the triangle side | 100 |
|          | 5.6   | Conclusion                                                  | 101 |
| Bi       | bliog | graphie                                                     | 103 |