République Algérienne Démocratique et Populaire

Ministère de l'Education Nationale

Université de Sétif

THESE

INSTITUT D'ELECTRONIQUE

Présentée pour l'obtention du diplôme de MAGISTER en ELECTRONIQUE

Option: Microélectronique

par:

Mr. Riad REMMOUCHE

THÈME

ÉTUDE ET MODELISATION DU TRANSISTOR MOS

Soutenue le 04+05/1994-

devant le Jury:

MM. A. KHELLAF

Président

L. SELMANI

Rapporteur

Y. BOUTERFA

Rapporteur

B. BELHOUKI

Examinateur

M. BOUCHEMAT

Examinateur

F. DJAHLI

Exan

RESUME:

L'amélioration des technologies de fabrication des circuits intégrés a entraîné la réduction des dimensions du transistor MOS (longueur de canal inférieure à 1 µm). De ce fait, des phénomènes hier négligeables deviennent prépondérants dans le fonctionnement du TMOS. En effet, l'évolution de la technologie, la course aux performances et la production de systèmes électroniques à des prix décroissants ont engendré un essor important de la simulation électrique. Cependant, le développement des technologies actuelles contraint à modéliser le plus finement possible le comportement des composants.

Parmi les problèmes qui se posent, à l'heure actuelle, est que les modèles ne sont pas assez précis pour traiter les effets de réduction de géométrie des composants. En effet, La longueur du canal devenant de plus en plus petite, les jonctions source et drain prennent de plus en plus d'importance, les effets capacitifs parasites seront de plus en plus prépondérants dans le comportement dynamique du TMOS. Les champs électriques à l'intérieur du transistor deviennent plus importants, les électrons (trous) du canal acquièrent alors une température électronique élevée et donc une énergie suffisante pour surmonter la barrière de potentiel de l'interface Silice-Silicium.

Notre étude est une contribution à la résolution de ces problèmes, elle consiste à mettre en œuvre un modèle compact de TMOS à canal court et étroit, en accord avec les performances technologiques, qui prend en compte la majorité des effets physiques décrivant le comportement réel du dispositif. Ce modèle, qu'on a dénommé SSIM (Setif Short-Channel IGFET Model), a été implanté dans le logiciel SPICE3F2 reconnu et imposé comme simulateur électrique standard par les technologues.

Après quelques rappels sur les principales propriétés de la structure MOS ainsi que le principe et le fonctionnement des TMOS, nous effectuons une étude critique des différents types des simulateurs électriques ainsi que les modèles auxquels ils font appel. Nous décrivons ensuite la philosophie de construction du modèle SSIM, son implantation dans SPICE3F2, sa validation en statique et en dynamique et nous présentons enfin les techniques usuelles de caractérisation et d'extraction de paramètres du modèle SSIM.

SOMMAIRE:

INTRODUCTION	8
CHAPITRE I : LE TRANSISTOR MOS	10
I.I. INTRODUCTION	11
I.2. LA STRUCTURE MOS	11
I.2.1. Description	11
I.2.2. Structure MOS idéale	12
I.2.3. Structure MOS réelle	18
I.3. LE TRANSISTOR MOS	19
I.3.1. Description	19
I.3.2. Régimes de fonctionnement	20
I.3.3. Equations de base	22
I.3.4. Types de TMOS	27
I.3.5. Tension de seuil	27
I.3.6. Transistors courts et étroits	29
I.3.7. Réduction de la mobillité	32
I.4. CONCLUSION	33
CHAPITRE II : SIMULATEURS ELECTRIQUES	34
II.1. INTRODUCTION	35
II.2. TYPES DE SIMULATEURS	36
II.3. CRITERES DE CHOIX D'UN SIMULATEUR	37
II.4. STRUCURE D'UN SIMULATEUR	38
II.5. MODES D'ANALYSE D'UN SIMULATEUR	40
II.6. TYPES DE MODELES D'UN SIMULATEUR	44
II.7. CONCLUSION	47
CHAPITRE III : MODELISATION DU TMOS	48
III.1. INTRODUCTION	49
III.2. MODELES STANDARDS DE TMOS	49
III.2.1. Modèle NIVEAU 1 de SPICE	51
III.2.2. Modèle NIVEAU 2 de SPICE	55
III.2.3. Modèle NIVEAU 3 de SPICE	58
III:2.4. Modèle BSIM de SPICE	60
III.3. MODELES CAPACITIFS ET A CONTROLES DE CHARGES	64
III.3.1. Modèle de MEYER	64
III.3.2. Modèles à contrôle de charges	67
III.4. LES MODELES NON-QUASI-STATIQUES	70
6	1

III.6. CONCLUSION	74
CHAPITRE IV : LE MODELE SSIM	. 75
IV.1. INTRODUCTION	76
IV.2. EQUATION DU COURANT DRAIN DC	76
IV.3. IMPLANTATION DU MODELE DC	86
IV.4. EXPRESSIONS DES CHARGES	88
IV.5. PARAMETRES DU MODELE	93
IV.6. DEPENDANCE DES PARAMETRES SUR LES DIMENSIONS	94
IV.7. EFFET DE LA TEMPERATURE	95
IV.8. CONCLUSION	97
CHAPITRE V. VALIDATION ET CARACTERISATION DU MODELE SSIM	98
V.1. Introduction	99
V.2. Validation en statique	99
V.2. Validation en dynamique	112
V.4. METHODES DE CARACTERISATION	105
V.4.1. Introduction	115
V.4.2. Méthode de CHERN	116
V.4.3. Méthode de PENG	. 117
V.4.4. Méthode de CIOFL	117
V.4.5. Méthode de DE LA MONEDA	118
V.4.6. Méthode de SUCIU	119
V.4.7. Méthodes d'éxtraction de ΔW	120
V.4.8. Méthodes d'extraction de la mobilité	121
V.4.9. Méthodes d'éxtraction de Nsub, Tox et Vfb	122
V.5. Conclusion	123
CONCLUSION	124
BIBLIOGRAPHIE	127
ANNEXE 1 : Principe d'un simulateur	136
ANNEXE 2 : Structure de SPICE3	145
ANNEXE 3 : Structure du répertoire SSIM	150
ANNEXE 4 : Paramètres électriques des technologies utilisées	153