Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université des Sciences et de la technologie Houari Boumediene (U.S.T.H.B)

BAB EZZOUAR, Alger

Mémoire de Magister

En informatique

Option: informatique mobile (IM)

Thème Un nouveau protocole de transport pour les réseaux maillés sans fil

Réalisé par :

Mr. Mohamed Amine KAFI

Membres de jury :

Mr M.AHMED NACER, professeur, USTHB. Mme N.NOUALI, Maître de recherche, CERIST. Mme S.MOUSSAOUI, Maître de conférences, USTHB. Mr D.TANDJAOUI, Maître de recherche, CERIST.

Président Examinatrice Examinatrice Directeur de thèse

Promotion: 2005/2006

Résumé

Les réseaux maillés sans fils (WMNs) consistent en un nombre de routeurs sans fils stationnaires interconnectés par des liens sans fils.

Actuellement, il n'y a aucun protocole de transport proposé spécifiquement pour les réseaux WMNs. Cependant, un grand nombre de protocoles de transports sont disponibles pour les réseaux ad-hoc. L'étude de ces protocoles aide dans la conception des protocoles de transports pour les WMNs.

Les protocoles de transport fiable de données peuvent être classés en deux types: variantes de TCP et nouveaux protocoles de transport. Les variantes de TCP semblent les plus adaptés vue l'interopérabilité avec l'existant.

Notre approche est d'adapter TCP en un protocole qu'on a appelé MTCP (Mesh TCP), dans lequel on a recensé quelques problèmes et trouver leurs solutions pour améliorer TCP dans les réseaux WMNs.

Notre protocole MTCP est une couche intermédiaire entre la couche réseau et la couche de transport. Cette couche différencie entre les pertes causées par la congestion, pour les quelles elle laisse le comportement standard de TCP, et les pertes causées par l'environnement sans fils, pour les quelles la retransmission des paquets (en cas de pertes) ou l'arrêt momentané des transmissions (en cas de partitionnement du réseau) sera adéquat. En plus, elle permet la prise en charge des effets de changements de routes lors de l'utilisation des protocoles de routage avec qualité de service.

Les résultats de simulations appuient notre approche et montrent que les performances de MTCP sont meilleures comparées à celles de TCP standard et des versions de TCP adaptées aux réseaux Ad-Hoc.

Sommaire

INTRODUCTION	1
chapitre 1: les réseaux maillés sans fils	
1.1 ARCHITECTURE DES RESEAUX MAILLES (WIRELESS MESH NETWORKS WMNS)	4
1.1.1 L'INFRASTRUCTURE DES WMN	5
1.1.2 Les Clients WMN	
1.1.3 L'ARCHITECTURE HYBRIDE WMN	
1,2 LES CARACTERISTIQUES D'UN RESEAU MESH	
1.3 LES DIFFERENCES ENTRE LES WMNS ET LES RESEAUX AD-HOC	8
1.4 QUELQUES DOMAINES D'APPLICATIONS	9
1.5 FACTEURS CRITIQUES INFLUENÇANT LES PERFORMANCES DES WMNS	13
1.6 LES TRAVAUX DE LA COUCHE APPLICATION	15
1.6.1 LES APPLICATIONS SUPPORTEES PAR LES WMNS.	15
1.6.2 LES AXES DE RECHERCHE	16
1.7 LES TRAVAUX DE STANDARDISATION DES RESEAUX MAILLES	17
1.7.1 LES STANDARDS DES RESEAUX MAN MAILLES	
1.7.2 LES STANDARDS DES RESEAUX LAN MAILLES	
1.7.2.1 IEEE 802.11s : Vue générale	
1.7.2.3 Configuration et gestion du maillage	
1.7.3 LES STANDARDS DES PAN (PERSONAL AREA NETWORKS) MAILLES	
1.7.3.1 IEEE 802.15.5	
1.7.3.2 ZIGBEE	22
1.8 CONCLUSION	24
Chapitre 2: Le protocole TCP	
2.1 CARACTERISTIQUES DU PROTOCOLE TCP	26
2.2 FONCTIONNEMENT DE TCP	28
2.3 DIFFERENTES VERSIONS DE TCP	33
2.3.1 TCP TAHOE	33
2.3.2 TCP RENO	33
2.3.3 TCP New Reno	34
2.4 CONTROLE DE CONGESTION	34
2.4.1 VARIABLES D'ETATS ASSOCIEES AU CONTROLE DE CONGESTION	35
2.4.2 MODE DE DEMARRAGE LENT (SLOW START)	35
2.4.3 MODE D'EVITEMENT DE CONGESTION (CONGESTION AVOIDANCE)	
2.4.4 RETRANSMISSION RAPIDE « FAST RETRANSMIT » 2.4.5 RECOUVREMENT RAPIDE « FAST RECOVERY »	
2.5 CALCUL DU HORS TEMPS DE RETRANSMISSION (RTO)	
2.6 LES OPTIONS DE TCP	
2.7 EXPLICIT CONGESTION NOTIFICATION (ECN)	
2.7.1 RANDOM EARLY DETECTION (RED)	
2.7.1 KANDOM EARLY DETECTION (RED) 2.7.2 AVIS EXPLICITE DE CONGESTION DANS IP	
2.7.3 SUPPORT POUR LE PROTOCOLE DE TRANSPORT.	
2.7.4 SOMMAIRE DES CHANGEMENTS REQUIS DANS IP ET TCP	
2 & L'ASVMETRIE DES RESEAUX ET TCP	46

2.8.1 Classification d'asymetrie	
2.8.1.1 Asymétrie de largeur de bande	
2.8.1.2 Asymétrie du media d'accès	
2.8.2.1 Gestion de la bande du lien montant	47
2.8.2.2 Gestion des acquittements peu fréquents	
2.9 CONCLUSION	50
CHAPITRE3: TCP DANS LES ENVIRONNEMENTS SANS FILS	
3.1 EFFETS DES RESEAUX AD-HOC SUR TCP	
3.2 TCP-F: UNE APPROCHE BASEE FEEDBACK	53
3.3 LE PROTOCOLE ATP (AD-HOC TRANSPORT PROTOCOL)	55
3.3.1 Les problemes de TCP dans les reseaux ad-hoc	
3.3.2 LA CONCEPTION D'ATP	
3.3.2.2 Les transmissions basées sur les taux	
3.3.2.3 Découplage de contrôle de congestion et de la fiabilité	
3.3.2.4 Contrôle assisté de congestion	
3.3.2.5 Interopérabilité et equitabilité de TCP	
3.4 LE PROTOCOLE ATCP	
3.4.1 L'APPROCHE D'ATCP	59
3.4.2 CONCEPTION D'ATCP	60
3.4.3 FONCTIONNEMENT DE LA COUCHE ATCP	
3.5 LE PROTOCOLE ATL	
3.5.1 ARCHITECTURES SANS FIL HETEROGENES	
3.5.2 DEMANDES HETEROGENES DE SERVICES	
3.6 CONCLUSION	65
CHAPITRE 4: LE PROTOCOLE MTCP	
4.1 LE PROTOCOLE MTCP	68
4.2 CONCEPTION DE MTCP	69
4.3 FONCTIONNEMENT DE LA COUCHE MTCP	71
4.4 LA METHODE DE TCP-RC	74
4.5 L'UTILISATION DES ACQUITTEMENTS SELECTIFS	76
4.6 LES ALGORITHMES DE MTCP	76
CHAPITRE 5: EVALUATION DES PERFORMANCES	
4.7 CONCLUSION	79
5.1 CAS DE PERTES	81
5.2 CAS DE CONGESTION	82
5.3 CAS DE PARTITIONS	83
5.4 DESORDRE DES PAQUETS	84
5.5 CAS DE CHANGEMENT DE ROUTE POUR LA QOS	85
5.6 METTRE LES CAS ENSEMBLES	86
Conclusion et Perspectives	88