الجمهورية الجزائرية الديمقراطية الشعبية

République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

UNIVERSITÉ HADJ LAKHDAR BATNA

Faculté des Sciences de L'Ingénieur Département d'Electronique

THESE

En vue de l'obtention du diplôme de

DOCTORAT ES-SCIENCES

Option : Electronique

Présentée par :

Mohamed BAHAZ

Magister en électronique

Thème

PROPRIÉTÉS NON LINÉAIRES DES TISSUS APPLIQUÉES À L'IMAGERIE ULTRASONORE

NONLINEAR TISSUS PROPERTIES APPLIED TO ULTRASOUND IMAGING

Soutenue le : 15 juillet 2010 Devant le Jury composé de :

- M. Benslama K. Benmahammed A. Bouakaz
- H. Djelouah
- D. Benatia N. Benoudjit

Prof., Université de Constantine Prof., Université de Sétif et Umm Alqura University, Makkah Directeur de Recherche, Inserm, Tours, France Prof., Université USTHB, Alger Prof., Université de Batna Dr. MC. Université de Batna

Président h Rapporteur Co-Rapporteur Examinateur Examinateur Examinateur

ANNEE UNIVERSITAIRE : 2009/2010 Avec le support de l'Inserm/DPGRF/2007-08 & LEA

Acknowledgements

Acknowledgements

First of all, I would like to express my sincere appreciation and thanks to my thesis Advisors, Professor Kier Benmahammed from the University of Setif, Algeria, and Umm Alqura University of Mekkah (KSA), and Ayache Bouakaz, Inserm research director from the University François Rabelais of Tours, France. They were fountains of knowledge and it was truly a pleasure to able to perform research under them and to have them as my advisors.

My thanks are extended to the examining committee members for their interest in my work:

• Doctor Malek Benslama, professor at the department of electronics of the University of Constantine.

• Doctor Hakim Djelouah, professor at the USTHB, University of Algiers.

• Doctor Djamel Benatia, professor at the department of electronics of the University of Batna.

• Doctor Nabil Benoudjit, MC at the department of electronics of the University of Batna.

I am very grateful to all my colleagues in the department of electronics of the University of Batna for their support and encouragements.

The work in this thesis is supported in part by Inserm/DPGRF, 2007-08 (a cooperation project between the Inserm France and DPGRF Algeria), and the Advanced Electronics Laboratory of the University of Batna, so I would like Acknowledge them.

NONLINEAR TISSUS PROPERTIES APPLIED TO ULTRASOUND IMAGING

Thesis presented by

Mohamed BAHAZ

Magister in Electronics

BIBLIOTHEQUE DU CERIST

to my mother. to the memory of my father.

Abstract

Abstract

The main aim of the work in this thesis is to exploit nonlinear tissues properties for improving in medical ultrasound image quality.

Ultrasound imaging techniques have been widely used in modern hospitals for clinical ultrasound diagnosis because they can provide important information on the diseased state of the tissues in a human body non-invasively and nondestructively.

Ulrasound imaging is based on the generation, detection and processing of acoustic waves. The waves are transmitted into the human body, and on encountering variations in the properties of the medium, the waves are scattered and reflected. These reflections therefore contain information on the structures and shapes inside the body. When they are intercepted, the backscattered acoustic echoes are then beamformed and processed to form an image.

The standard approach for ultrasound imaging is to use the fundamental frequency from the reflected signal to form images. Tissue harmonic imaging is a new gray-scale imaging technique, which use harmonic information from nonlinear ultrasound propagation to form an image. It creates images that are derived solely from the higher frequency.

The properties of tissue cause the primary ultrasound signal to distort in the body. The distortion of this signal causes harmonics to be generated in tissue and these harmonics can then be used to generate an ultrasound image. The properties of these harmonic signals that can offer several advantages including improved contrast resolution, reduced noise and clutter, improved lateral resolution, reduced artefacts (side lobes, reverberations). In this thesis, second harmonic component generation has been used to create images offering improvements over conventional B-mode images in penetration, spatial resolution and, more significantly, in the suppression of acoustic clutter and side-lobe artefacts.

In ultrasound harmonic imaging, an ongoing problem is that undesired signals are contained in the reflected waves, and that corrupt the image data, which leads to the contamination of the obtained image. Harmonic received frequency band must not contain components from transmit band, and its components must sufficiently be separable from fundamental spectral component. Thus, to effectively employ the information contained in the second harmonic of the received signal, this information should be properly extracted. In this thesis, a new technique for acquiring the proper second harmonic signal is presented; an optimization of the transmitted bandwidth is recommended to receive the purely second harmonic signal for harmonic imaging. Given a certain available bandwidth for the transmitted pulse may be send at, and what band the second harmonic signal should be received at.

Contents

BIBLIOTHEQUE DU CERIST

Contents

CHAPTER I GENERAL INTRODUCTION	1
I.1 Introduction and motivation	1
I.2 Medical ultrasound imaging	3
I.3 Tissue harmonic imaging and nonlinear propagation	5
I.4 Modeling of nonlinear ultrasound propagation in tissue	б
I.5 Thesis Objective	7
I.6 Thesis outline	8
CHAPTER II THEORETICAL BACKGROUND	9
II.1 HISTORY	9
II.2 NATURE OF ULTRASOUND	
II.3 GENERATION AND DETECTION OF ULTRASOUND WAVE	S11
II.3.1 Piezoelectric effect	
II.3.2 Piezoelectric materials	
II.4 ULTRASOUND WAVE PROPAGATION	14
II.4.1 Ultrasound waves	14
II.4.2 Plane wave of small amplitude, equation of propagation	14
II.4.3 Nonlinear propagation of sound beams	
II.5 PROPERTIES OF ULTRASOUND WAVES	
II.5.1 Speed	
II.5.2 Frequency	
II.5.3 Acoustic impedance	
II.5.4 Reflection	
II.5.5 Attenuation	20
II.6 ULTRASOUND TRANSDUCERS	
II.6.1 Radiation and reception	
II.6.2 Important transducer performance parameters	
II.6.3 Transducer in medical imaging	
II.6.3.1 Beam profile	
II.6.3.2 Focusing	
II.7 RADIATED BEAM DESCRIPTION	
II.7.1 Beam regions.	
II.7.1.1 Neartield or Fresnel region	
II.7.1.2 Fartield or Fraunhoter region	
II.7.1.3 Transition region	
II.7.2 Energy distribution	
II.7.2.1 Main lobe	
II. (.2.2 Secondary lobes	

II.7.2.3 Grating lobes	31
II.8 MEDICAL ULTRASOUND IMAGING	31
II.8.1 Principle	31
II.8.2 Image displaying modes	
II.8.2.1 A-mode	
II.8.2.2 B-mode	33
II 8.2.3 C-mode	34
II 8 2 4 M-mode	34
II 9 BEAMFORMING FOR IMAGING	
II 10 RESOLUTION AND IMAGE OUALITY	
CHAPTER III FUNDAMENTAL ULTRASOUND IMAGING	37
III.1 INTRODUCTION	37
III.2 FUNDAMENTAL ULTRASOUND IMAGING	
III.3 LINEAR PROPAGATION AND SMALL SIGNAL APPROXIMATION	
III.4 LINEAR ULTRASOUND SYSTEM	40
III 4 1 Field in linear ultrasound systems	41
III 4 2 Spatial impulse response	43
III 4.3 Calculation of spatial impulse response	10
III 5 NUMERICAL SIMULATION	46
III.5 1 FIFLD: Program description	+0
$\mathbf{HI} \leftarrow \mathbf{A} \mathbf{D} \mathbf{A} \mathbf{V} \mathbf{T} \mathbf{D} \mathbf{A} \mathbf{N} \mathbf{D} \mathbf{U} \mathbf{C} \mathbf{F} \mathbf{D}$	۲+۲
III.O ARRAI TRANSDUCER	40 50
III.9 SINGLE ELEMENT CIRCULAR TRANSDUCER	
III. IU APODIZATION	
III.11 SIMULATION RESULTS	
III.11.1 Unfocused Circular Transducer	53
III.11.2 Focused Circular Transducer	
III.12 EXAMPLE OF B-MODE IMAGE	57
CHAPTER IV HARMONIC III.TRASOUND IMAGING	58
IV 1 INTRODUCTION	
	50
IV.2 HARMONIC ULITASOUND IMAGING.	
IV.5 DENERTIS OF TRACINOMIC IMAGING.	
IV.5 1 Variation of wave anad in a wave	04 64
IV.5.1 Variation of wave specu in a wave	04 65
IV.5.2 Paralleter D/A	
IV.5.3 Allount of wave distortion.	
IV.5.4 Goldberg's number	
IV.5.5 Mechanical index.	
IV.6 EQUATION OF PROPAGATION.	
IV.6.1 Lossless Burgers equation	
IV.6.2 Burgers equation.	
IV.6.3 Sound beams and KZK equation	70
IV.7 MODELING OF NONLINEAR MEDICAL ULTRASOUND	71
IV.7.1 Medium under consideration	72
IV.7.2 Nonlinear numerical methods	73
IV.7.3 Finite difference analysis for ultrasound modeling	74
IV.8 NUMERICAL SOLUTION OF KZK EQUATION	75

IV.8.1 Boundary conditions	77
IV.9 SIMULATION RESULTS USING CIRCULAR TRANSDUCER	79
IV.9.1 Low excitation intensity	80
IV.9.2 High excitation intensity	82
IV.10 GRATING LOBES	86
IV.11 PENETRATION	
IV.12 EXAMPLE OF COMPARATIVE IMAGES	
CHAPTER V OPTIMIZATION OF HARMONIC IMAGING	90
V.1 INTRODUCTION	90
V.2 IMAGE FORMATION IN TISSUE HARMONICS	91
V.3 SECOND HARMONIC EXTRACTION TECHNIQUES	92
V.3.1 Filtration technique	92
V.3.2 Pulse encoding technique	94
V.3.3 Pulse inversion technique	94
V.3.4 Side-by-side phase cancellation technique	98
V.3.5 Power modulation technique	
V.4 OPTIMIZATION OF HARMONIC IMAGING	101
V.4.1 Bandwidth	
V.4.2 Overlap	105
-	
CHAPTER VI CONCLUSION & FUTURE WORKS	109

REFERENCES