République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Batna Faculté des Sciences de l'Ingénieur Département d'Electronique

Thèse Contextual Enhancement Of Satellite Images

En vue de l'obtention du diplôme de **Docteur d'état en électronique**

Option: contrôle et traitement de signal

Par SOUAD BENABDELKADER

Jury

Président	N. Bouguechal	Professeur (Université de Batna)
Rapporteur	M. Boulemden	Professeur (Université de Batna)
Examinateur	D. Benatia	Professeur (Université de Batna)
Examinateur	M. Benyoucef	Maître de conférence (Université de Batna)
Examinateur	F. Hachouf	Maître de conférence (Université de Constantine)
Examinateur	S. Chikhi	Maître de conférence (Université de Constantine)

Abstract

Images are the main sources of information in many applications. However, the images obtained from various imaging systems are subject to degradations and loss of information.

In the field of remote sensing, cloud obscuration presents a major impediment to the effective use of passive remotely sensed imagery. Cloud occurrence distorts or completely obscures the spectral response of land covers, which contributes to difficulties in understanding scene content. Therefore, a cloud removal task is needed as the primary important step to recover the missing measurements. Recently, cloud removal has been addressed as an image reconstruction/restoration issue, in which it is aimed at recovering an original scene from degraded or missing observation.

As a first application for remote sensing, we propose three general methods for postrestoration of cloud contaminated areas in multispectral multitemporal remote sensing images. Spatial, temporal and spectral information are incorporated in the post-restoration processes to analyze which is more suited to improve the restoration quality, depending on the contamination scenario. Experiments have shown that higher accuracies are obtained with the use of mutual spatio-spectral and temporal information.

Second, we address the problem of contrast enhacement for remote sensing application. At this purpose, two variational perspectives to bright preserving contrast enhancement scheme have been proposed. The methods can be viewed as refinements of histogram equalization, which use both local and global information to remap the image gray levels. The brightness preserving constraint is implicitly expressed with the use of a fuzzy 2-partition thresholding process to extract object regions from their background on the basis of the similarity of brightness of image objects.

The first method models the spatial relationships between neighboring pixels with a second order derivative metric which provides a local measure of spatial activity within the data. The second method uses a contextual spatial histogram to describe the gray level distribution in a predefined neighborhood system over a predefined area in the image.

Experiments have shown that the proposed methods increase the brightness preservation and yield a more natural enhancement. They are able to amplify edge contrast without explicitly detecting edge pixels.

Résumé

L'être humain dépend à 99% de sa vision pour récolter des information sur le monde qui

l'entoure. Il est donc naturel que l'imagerie numérique ait pris une importance considérable. Néanmoins, historiquement parlant, les potentialités du traitement numérique des images pour le transfert et l'amélioration des images sont apparues avec le développement des grands ordinateurs et surtout avec les nécessités des programmes de recherche spatiale. Puis est venue l'ère de l'explosion des applications dans tous les domaines....

L'imagerie numérique est limitée par les dégradations, généralement désignées sous le terme de bruit d'image, dues aux bruits inhérents aux dispositifs d'acquisition (caméra, amplificateurs, quantification, ...). L'élimination du bruit et le recouvrement de l'information perdue ou cachée constituent donc une étape cruciale dans le traitement d'image.

D'un autre côté, les images acquises dans des conditions d'éclairage extrêmes; lumière trop faible ou trop puissante ainsi que les images issues de capteurs dont la dynamique est trop réduite sont peu contrastées, ce qui gêne sérieusement les opérations de reconnaissance, d'analyse et d'interprétation. Les méthodes de manipulation d'histogramme sont à l'origine des techniques d'amélioration du contraste, en particulier l'égalisation d'histogramme en raison de sa simplicité et des informations pertinentes à l'amélioration fournies par l'histogramme de l'image.

Il est important de noter que la restauration constitue une opération d'amélioration basée sur un modèle mathématique de la dégradation, alors que l'amélioration du contraste ne prend en considération aucun modèle de bruit, et est par conséquent laissée aux soins de l'observateur pour juger de la qualité de l'amélioration.

Le travail présenté dans cette thèse concerne à la fois restauration et amélioration du contraste appliquées au domaine de la télédétection satellitaire.

La thèse est composée de quatre chapitres.

Le premier chapitre introduit l'état de l'art des méthodes de restauration tout en présentant les critères quantitatifs standard de la qualité de restauration en plus d'un aperçu sur la littérature des méthodes de restauration.

Le deuxième chapitre aborde la restauration du point de vue d'une post-reconstruction de zones contaminées par les nuages dans une séquence d'images multispectrales multitemporelles. L'objectif visé dans ce chapitre est d'améliorer la qualité de restauration obtenue par deux méthodes générales de restauration développées récemment, en l'occurrence la technique dite Contextual Multiple Linear Prediction (CMLP) et celle appelée Contextual Nonlinear Prediction (CNP). Une post-reconstruction est alors effectuée en utilisant conjointement l'information spatiale, spectrale et temporelle. Trois méthodes en guise de solution ont été proposées, en l'occurrence la prédiction multimodale, la prédiction de l'erreur résiduelle issue d'un estimateur et enfin la post-reconstruction spatio-spectrale. La génération d'une Map d'erreur est utilisée comme critère d'évaluation supplémentaire de la qualité de restauration. Les résultats de la simulation ont été présentés à la fin du chapitre.

Le troisième chapitre présente les bases théoriques générales des techniques de modification d'histogramme. Les techniques de transformation ponctuelles sont considérées, en particulier l'égalisation et la spécification d'histogramme qui sont décrites en détail et par l'exemple pour la première. Trois critères de uantitification de la qualité d'amélioration sont présentés et le chapitre s'achève par un aperçu sur la littérature concernant les méthodes d'égalisation d'histogramme.

Le quatrième chapitre concerne l'amélioration du contraste d'images de télédétection satellitaire en utilisant l'égalisation d'histogramme. Deux méthodes sont proposées, chacune se basant sur le seuillage d'une 2-partition floue pour satisfaire au critère de préservation de la luminosité des pixels. L'incorporation de l'information spatiale est exprimée dans la première méthode par le calcul des gradients du second ordre. Dans la deuxième méthode, le modèle spatial est exprimé par un histogramme bi-dimensioonel représentant la distribution spatiale conjointe des niveaux de gris dans un voisinage prédéterminé. Cet histogramme est calculée sur une zone prédéfinie de l'image et est utilisé par la suite pour le calcul de la densité de probabilité cumulative de l'image entière. Finalement, les résultats de la simulation sont présentés à la fin du chapitre.

Contents

IN٦	ITRODUCTION				
1.	DIGITAL IMAGE RESTORATION				
	1.1	Introduction	3		
	1.2	IMAGE DEGRADATION MODEL	4		
	1.3	Measure of Image Restoration Quality	5		
		1.3.1 Standard Metrics	5		
		1.3.2 Accuracy of the Measure	6		
		1.3.3 Precision of the Measure	6		
		1.3.4 Meaning of Measurement	6		
	1.4	LITERATURE SURVEY	7		
		1.4.1 Classical Image Restoration Techniques	7		
		1.4.2 New Image Restoration Techniques	10		
	1.5	SUMMARY	12		
2.	Со	NTEXTUAL POST-RECONSTRUCTION OF CLOUD-CONTAMINATED IMAGES	13		
	2.1	Introduction	13		
	2.2	CLOUD REMOVAL TECHNIQUES	14		
	2.3 Problem Formulation2.4 Proposed Solutions				
		2.4.1 Spectral Information Source	18		
		2.4.2 Spatial Information Source	18		
	2.5	MULTIMODAL PREDICTOR	18		
		2.5.1 Spectral Information	18		
		2.5.2 Spatial Information	19		
		2.5.3 Prediction Function	19		
	2.6 RESIDUAL BASED PREDICTION				

		2.6.1	Sequential Residual-Based Prediction (SRBP)	21
		2.6.2	PARALLEL Residual-Based Prediction (PRBP)	23
	2.7	CONTE	EXTUAL SPATIO-SPECTRAL POST-RECONSTRUCTION	24
		2.7.1	Description of the Method	24
		2.7.2	Spectral Information	25
		2.7.3	Spatial Information	25
		2.7.4	Prediction Function	26
		2.7.5	Error Map Generation	26
		2.7.6	ALGORITHMIC Description	27
2.8 EXPERIMENTAL RESULTS		IMENTAL RESULTS	28	
		2.8.1	Data Set Description and Experiment Design	28
		2.8.2	Previous Results	29
		2.8.3	Multimodal Prediction Simulations	33
		2.8.4	Residual-Based Prediction Simulations	37
		2.8.5	CSSPR Simulations	43
	2.9	Summ	ary	49
3.	His	TOGRA	AM MODIFICATION	50
	3.1	INTRO	DUCTION	50
	3.2	HISTO	GRAM MODIFICATION	51
			Contrast of an Image	51
			Image Transformation	51
		3.2.3	Histogram Processing	51
	3.3	Quali	TY MEASURES	56
		_	Absolute Mean Brightness Error	56
		3.3.2	Contrast –Per-Pixel	55
		3.3.3	Image Distortion	56
	3.4	LITERA	ATURE SURVEY	56
	3.5	SUMM	ARY	58
4	Car	UTD 4 03	FANIANOEMENT OF CATELLITE IMAGES BASES CRATIAL CONTEXT	0
4. CONTRAST ENHANCEMENT OF SATELLITE IMAGES BASED SPATIAL C 4.1 INTRODUCTION				
				59 50
	4.2		RAST ENHANCEMENT BASED THRESHOLDING	59
			Brightness Preserving Bi-Histogram Equalization	60
		4.2.2	Dualistic Sub-Image Histogram Equalization	62

	4.2.3	Fuzzy 2-Partition Thresholding	62
	4.2.4	Fuzzy 2-Partition Thresholding for Local Contrast Enhancement	68
4.3	Conti	EXTUAL SPATIAL HISTOGRAM FOR CONTRAST ENHANCEMENT	70
	4.3.1	Contextual Spatial Neighborhood	70
	4.3.2	Contextual Spatial Histogram	70
	4.3.3	Contextual Cumulative Density Function	70
	4.3.4	Algorithm	71
4.4 Experimental Results		71	
	4.4.1	Local Contrast Enhancement Based Thresholding Simulations	71
	4.4.2	Contextual Spatial Histogram for Contrast Enhancement Results	72
4.5	SUMMARY		72
CONCLUSION			88
Bibliography			