RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITÉ ABDERRAHMANE MIRA DE BÉJAÏA FACULTÉ DES SCIENCES ET SCIENCES DE L'INGÉNIEUR DÉPARTEMENT D'INFORMATIQUE ÉCOLE DOCTORALE EN INFORMATIQUE

Mémoire de Magistère

en Informatique

Option réseaux et systèmes distribués

Thème

Équilibrage de charge sur une topologie dynamique, mise en oeuvre pour un problème scientifique

Présenté le 29 Novembre 2005 par **Abderrahmane Sider**

Président Moussa Kerkar Professeur à l'Université Abderrahmane Mira de Béjaia Béjaia, Algérie

Rapporteur Jaques Mohcine Bahi Professeur à l'Université de Franche-Comté,

Franche-Comté, France

Examinateur Mouloud Koudil Maître de Conférences à l'Institut National de formation

en Informatique (INI), Oued Smar, Alger, Algérie

Examinateur Karima Benatchba Maître de Conférences à l'Institut National de formation

en Informatique (INI), Oued Smar, Alger, Algérie

Invité Raphaël Couturier Maître de Conférences à l'Université de Franche-Comté,

Franche-Comté, France

© Abderrahmane Sider, 2005

Résumé

L'équilibrage de charge est l'un des problèmes centraux à résoudre lors du développement d'une application parallèle. Son objectif est d'accélérer l'exécution de l'application en distribuant efficacement le travail sur les processeurs de telle manière à ce qu'ils aient approximativement la même quantité de charge à traiter. Le contexte des applications s'exécutant sur Grid, les réseaux mobiles Ad hoc et Peer-to-Peer pose le problème de la fiabilité des algorithmes d'équilibrage de charge développés jusque-là pour des réseaux statiques, lorsque des coupures de liens de communications surviennent. Ceci peut être virtuel par l'effet de la congestion ou réel par la perte totale du lien de communication. Le nombre de processeurs est supposé constant mais les liens de communications coupés varient au cours de l'exécution. Notre travail a consisté à étudier les différents algorithmes d'équilibrage de charge sur topologies statiques et dynamiques et à comparer leur vitesse de convergence et la qualité de l'équilibre global qu'ils permettent de réaliser avec différents taux de coupures. La seconde contribution de ce travail est un algorithme distribué pour implémenter la stratégie M2LL (Most To Least Loaded) utilisée par la méthode d'équilibrage de charge GAE (Generalized Adaptative Exchange). M2LL choisit d'équilibrer prioritairement la charge des processeurs présentant le plus grand déséquilibre d'un domaine de voisinage en tenant compte des coupures. GAE est une version adaptée aux topologies dynamiques de GDE (Generalized Dimension Exchange), l'une des méthodes les plus efficaces pour l'équilibrage de charge sur topologies statiques. Les résultats montrent que GAE M2LL est bien adaptée aux topologies dynamiques et converge plus rapidement que RFOS. De plus, lorsque l'équilibre local dans tous les domaines de voisinage est atteint, GAE M2LL aboutit à un équilibre global borné par le diamètre de la topologie du réseau d'interconnexion, et reste stable pour une structure donnée indépendamment de la probabilité de coupures, ce qui fait de GAE M2LL un algorithme bien adapté au partage de charge. Finalement, nous avons appliqué l'équilibrage de charge sur une application distribuée pour la résolution d'un système d'équations linéaires. Les résultats montrent que l'équilibrage apporte une accélération certaine à l'application quelque soit le taux de coupures présentes dans le réseau.

Mots Cl'es: 'equilibrage de charge, r'eseaux dynamiques, diffusion relax'ee , dimension exchange g'en'eralis'e, dimension exchange adaptatif, M2LL, m'ethode it'erative de Jacobi.

Abstract

Load Balancing is one of the central issues to be addressed in the development of an efficient parallel application. It aims at speeding up the execution and thus reducing the completion time by efficiently distributing the total computation workload among available processors. This is achieved in a manner that after the load balancing operation, each of the processors have to process approximately the same amount of work. In the emerging areas of grid computing, mobile ad hoc and peer-to-peer networks, this task faces the impredictible loss of communication links between processors. This can happen virtually because of contention or timeouts associated with communication protocols or physically by the crash of the communication link. This new context has given raise to the question of the reliability of known load balancing algorithms designed primarly for static networks in the presence of broken edges. The main target of this work is to investigate related work, to implement different load balancing algorithms and to compare their behaviour when different rates of broken edges appear in the most popular interconnection networks. Our second contribution is a distributed implementation of the M2LL (Most To Least Loaded) policy, which is used by the GAE (Generalized Adaptative Exchange) algorithm. M2LL chooses to balance first the most unbalanced processors of every neighborhood. GAE is especially designed for load balancing on dynamic topologies and is an improved version of GDE, the well known load balancing method on static topologies. Results show that GAE M2LL is very efficient even when high rates of edges are broken and upon reaching a local balanced state, GAE M2LL can perform a globally balanced state bounded by the diameter of the considered topology. In addition to be suitable in cases where only load sharing is needed, this quality showed to be noticeably stable even when different rates of broken edges are used. Finally, load balancing is applied to a real distributed application for solving a linear system of equations. It comes out that load balancing speeds up the application whatever the rate of broken edges in the network

Key words: load balancing, dynamic networks, relaxed diffusion, generalized dimension exchange, generalized adaptative exchange, M2LL, the Jacobi iterative method.

Dédicaces

A Mes Parents,

A mon collègue et ami Kacem Chahine Que Dieu l'accueille en Son Vaste Paradis,

A tous les Hommes épris de Savoir, de Paix et de Justice

Remerciements

Un certain nombre de personnes très proches ou très lointaines en termes de distance ou de présence - c'est selon - ont contribué à ce que ce travail voit le jour puis qu'il progresse, j'aimerais leur exprimer ici chacun mes remerciements infinis.

Je tiens à remercier en premier lieu mon directeur de thèse, Mr Bahi, professeur à l'université de Franche-Comté pour m'avoir accordé l'honneur et le plaisir de travailler dans un domaine aussi pointu et intéressant que celui de l'équilibrage de charge sur topologies dynamiques. Sans lui, ce travail, n'aurait jamais existé.

Mr Couturier, Professeur à l'Université de Franche-Comté a été pour moi un guide, un fin critique et un encourageur discret. Nos échanges abondants sur maintes questions m'ont permis d'avancer sur l'essentiel et les détails. Ses nombreuses remarques, orientations et Stops! transparaissent le long de cette thèse. Je vous suis très reconnaissant.

Je remercie beaucoup Mmes et Mrs les membres du jury qui ont accepté de me faire l'honneur de juger mon travail.

J'en viens à mes collègues et amis de l'école doctorale en Informatique Résyd. J'aimerais tout d'abords adresser mes sincères remerciements à tous sans exception, d'avoir été là; sans vous tous Résyd n'est qu'un sigle. Ensuite, mes remerciemets les plus chaleureux vont à toutes les personnes qui de près ou de loin, à quelque niveau que ce soit de l'échelle de responsabilité, se sont donnés corps et âmes ou apporté ce qu'ils peuvent, notamment les professeurs, pour que notre formation soit une réussite.

Je tiens à remercier tout particulièrement mes amis Abdelaziz Babakhouya, Said Yahiaoui, Said Gharout, Mohammed Abdelghani Bouaissa, Ahcène Bendjoudi, Yacine Belhoul, Kamel Mehaoued et Rosa Bouzbid. Certains d'entre vous se sont simplement intéréssés à ce que je faisais, d'autres m'ont permis de comprendre que faire comprendre peut être instructif même à soi-même et toi Aziz tu m'as donné des idées, Merci! Que les autres que je ne cite pas nommément ne m'en tiennent pas rancune, vos amitiés et encouragements sont gravés dans ma mémoire. Les moments de stress, de joie et de détente que nous avons passés ensemble sont ce qui reste des deux années écoulées. Ils sont les témoins récents d'un chemin que nous avons pris ensemble. Que Dieu vous assiste dans vos projets les plus fous et que la réussite soit de votre côté dans la santé et le bonheur.

Je n'oublie pas de remercier tous les membres de la famille, frères, soeur et proches pour leurs encouragements et soutien constants tout au long de ces deux années d'études. Que tous mes ami(e)s trouvent ici l'expression de ma gratitude.

Table des matières

7D 1 1	1	, •	•
Table	d D C	mati	Arac
Table	ues	шаы	CI CO

Li	iste des algorithmes		iv	
Li	ste d	les tab	leaux	\mathbf{v}
Li	ste d	les figu	ires	x
In	trod	uction	générale	1
	Desc	cription	du problème et motivations	1
	Con	tenu du	document	4
1	Équ	ıilibrag	ge de charge sur topologies statique et dynamique	6
	1.1	Critèr	es de performance d'un algorithme d'équilibrage de charge	7
	1.2	Classi	fication des algorithmes d'équilibrage de charge	9
		1.2.1	Équilibrage statique vs dynamique de charge	9
		1.2.2	Équilibrage de charge local vs global	10
		1.2.3	Équilibrage de charge centralisé vs distribué	10
		1.2.4	Équilibrage initié par l'émetteur, le récepteur ou symétrique	11
		1.2.5	Équilibrage de charge synchrone vs asynchrone	11
	1.3	Algori	thmes pour topologies dynamiques	12
		1.3.1	L'algorithme naturel	12
		1.3.2	Les algorithmes de type diffusion	14
			1.3.2.1 La diffusion de premier ordre : FOS	14
			1.3.2.2 FOS sur réseaux avec topologie dynamique	16
		1.3.3	La diffusion relaxée RFOS	18
		1.3.4	Les algorithmes de type Dimension Exchange	18

			1.3.4.1 DE sur topologies dynamiques	21		
			1.3.4.2 GDE sur topologies dynamiques (GAE)	21		
	1.4	Conclu	usion	22		
2	Alg	Algorithme distribué pour la stratégie M2LL				
	2.1	Analys	rse	25		
		2.1.1	Point de vue d'un processeur	25		
		2.1.2	Un problème de choix	26		
		2.1.3	Un problème de points de vue différents	27		
		2.1.4	Un problème de charge à mi-chemin	27		
	2.2	Solutio	on proposée	28		
		2.2.1	Intérêt d'un processeur pour l'équilibrage de charge	28		
		2.2.2	Meilleur intérêt et ensemble de processeurs intéressants	28		
		2.2.3	Processeur le plus intéressant	29		
			2.2.3.1 Cas avec un problème de charge à mi-chemin	30		
			2.2.3.2 Cas sans problème de charge à mi-chemin	31		
		2.2.4	Pair d'un processeur	32		
		2.2.5	Processeur décidé	32		
		2.2.6	Préférence d'un processeur	33		
			2.2.6.1 Un choix simple	33		
			2.2.6.2 Un choix complexe	33		
		2.2.7	Propriétés de M2LL	35		
2.3 L'a		L'algo	orithme GAE avec la stratégie M2LL	37		
	2.4	Conclu	usion	38		
3	Con	nparais	ison de GAE M2LL, GDE et RFOS	39		
	3.1	Conte	exte de travail	39		
		3.1.1	Paramètres d'échange et de relaxation	40		
		3.1.2	Simulation des coupures	41		
		3.1.3	Mesures de performance	42		
			3.1.3.1 Convergence	42		
			3.1.3.2 Qualité de l'équilibre	43		
	3.2	Compa	paraison sur topologies statiques	44		
		3.2.1	Convergence	44		
			3.2.1.1 Nombre d'itérations	44		

			3.2.1.2	Temps d'exécution de la phase de décision	45
			3.2.1.3	Coût en communication de la phase de migration	46
			3.2.1.4	Choix d'un algorithme	47
		3.2.2	Qualité	de l'équilibre	47
	3.3	Comp	araison sı	ır topologies dynamiques	49
		3.3.1	Influence	e des coupures sur la convergence	49
			3.3.1.1	Influence des coupures sur le nombre d'itérations	49
			3.3.1.2	Influence des coupures sur le temps d'exécution de la phase	
				de décision	51
			3.3.1.3	Influence des coupures sur le coût en communication de la	
				phase de migration	52
		3.3.2	Influence	e des coupures sur la qualité de l'équilibre	54
	3.4	Concl	usion		55
4	App	olicatio	on au pro	oblème d'un solveur de Jacobi	57
	4.1	Descri	ption séq	uentielle de l'application	58
		4.1.1	La méth	ode Jacobi	58
		4.1.2	Critère e	d'arrêt	60
	4.2	Descri	ption dist	tribuée de la méthode de Jacobi	61
		4.2.1	Prise en	compte des liens coupés	63
		4.2.2	Détectio	on de convergence et terminaison	64
	4.3	Équili	brage de	charge et l'application	65
		4.3.1	Notion o	de charge	65
		4.3.2	Interact	ion calculs/équilibrage	65
	4.4	Tests	et résulta	ts	66
		4.4.1	Vitesse	de convergence d'une distribution de charge initiale équilibrée	67
			4.4.1.1	Convergence sur topologies statiques	67
			4.4.1.2	Convergence sur topologies dynamiques	68
		4.4.2	Vitesse	de convergence d'une distribution de charge initiale déséqui-	
			librée .		72
			4.4.2.1	Convergence sur topologies statiques	72
			4.4.2.2	Convergence sur topologies dynamiques	72
		4.4.3	Apport	de l'équilibrage de charge	77
			4.4.3.1	Sur une topologie statique	79
			4.4.3.2	Sur topologies dynamiques	81

CERIST
SUE
THEG
101
BIB

TABLE DES MATIERES	iv
4.5 Conclusion	84
Conclusion générale et perspectives	86