

République Algérienne Démocratique

Université de Batna Faculté des Sciences de l'ingénieur Département d'électronique

Thèse

Présentée pour obtenir le Diplôme de Doctorat Science en électronique Option Contrôle industriel

Présentée par

Fatiha Hamdi

Contribution à la Synthèse d'Observateurs Pour les Systèmes Hybrides

Soutenue le 13/07/2010 devant le jury :

Président:

Pr : Mohammed Boulemden Université de Batna(Algérie)

Examinateurs

Pr : Rachida Ghoul Hadiby
Mc: Mohammed Saleh Khireddine
Pr : Hicham Tebbikh
Université de Batna (Algérie)
Université de Guelma (Algérie)

Rapporteurs:

Pr : Khier Benmahammed Université de Sétif (Algérie)

Pr : Noureddine Manamanni Université de Reims Champagne Ardenne, CReSTIC (France)

Invité d'honneur:

Mc : Nadhir Messai Université de Reims Champagne

Ardenne, CReSTIC. (France)

Sommaire

Résumé Introduction Générale

Chapitre 1	Introduction	à la	a théorie	des syst	tèmes d	lvnamiau	es hybrides
r						-J ====================================	

1.1. Introduction	2 3		
1.2. Présentation des systèmes hybrides			
1.2.1. Notion de modèle	3 4		
1.2.2. Définition			
1.2.3. Structure des systèmes hybrides	6		
1.2.4. Classification des comportements hybrides	7		
1.2.4.1. Commutations autonomes	8		
1.2.4.2. Commutations contrôlées	9		
1.2.4.3. Sauts autonomes	9		
1.2.4.4. Sauts contrôlés	10		
1.3. Bref aperçu sur les travaux autour des systèmes hybrides	10		
1.3.1. Modélisation des systèmes hybrides	11		
1.3.1.1. Le modèle basé sur l'automate hybride	11		
1.3.1.2. Réseaux de Petri et formalisme hybride	13		
a. Concepts de base des réseaux de Petri	14		
b. Réseaux de Petri continus et modèle hybride	15		
c. Réseaux de Petri hybrides	17		
d. Réseaux de Petri associés aux équations différentielles	19		
1.3.2. Classe des systèmes hybrides	20		
1.3.2.1. Systèmes linéaires à commutations	20		
a. Systèmes linéaires à commutations dépendant de l'état	21		
b. Systèmes linéaire à commutations dépendant du temps	21		
c. Systèmes linéaire à commutations mixtes	22		
1.3.2.2. Systèmes linéaires par morceaux	22		
1.3.3. Stabilité des systèmes hybrides	22		
1.4. Conclusion	24		
	25		
Chapitre 2 Réseaux de Pétri différentiels (RdPdf) et SDH			
2.1. Introduction	28		
2.2. Présentation des réseaux de Petri différentiels	29		
2.3. Principe de modélisation des SDH par les réseaux de Petri différentiels	31		
2.3.1. Description de la partie discrète d'un SDH par les réseaux de Petri	32		
différentiels	5 -2		
2.3.2. Description de la partie continue d'un SDH par les réseaux de Petri	32		

differentiels	
2.3.3. Description de la partie loi de commutation	34
2.3.3.1. Modélisation des conditions des transitions entre les différents modes	34
des SDH	
2.3.3.2. Contraintes liées aux variables d'états	35
a. Systèmes linéaires à commutations dépendantes des variables d'états	36
b. Systèmes linéaires par morceaux	37
	41
2.3.3.3 Contraintes dépendantes du temps et du mixage du temps et de l'état	
a. Notion du temps de séjours	42
b. Définition du temps de séjours	42
c. Principe de modélisation par les <i>RdPdf</i>	42
2.4. Détermination du temps de séjours	44
2.4.1. Interaction entre la partie continue et discrète	44
2.4.2. Condition du calcule du temps de séjours	48
2.5. Résultats de simulation	50
2.6. Conclusion	54
Chapitre 3 Synthèse d'observateur Hybride	
Chapter & Synthese a observateur Trybride	
3.1. Introduction	56
3.2. Problématique	58
4	60
· · · · · · · · · · · · · · · · · · ·	
3.3.1. Synthèse de l'observateur Discret	60
3.3.1.1. Principe de l'approche	60
3.3.1.2. Conditions de convergence	62
3.3.2. Synthèse de l'observateur continu	65
3.3.2.1. Condition de convergence de l'observateur d'état continu	65
a. Observateur et le système évoluent dans le même mode	65
b. Observateur et système n'évoluent pas dans le même mode	68
b.1. Cas autonome	68
b.2. Cas non autonome	72
	75
3.4. Résultats de simulation	84
3.5. Conclusion	04
Chanitra A Stabilitá at Stabilisation	
Chapitre 4 Stabilité et Stabilisation	
4.1. Introduction	86
4.2. Observateur hybride et approche du temps de séjours	87
4.2.1. Contraintes de convergence de l'observateur hybride	88
4.2.2. Simulation et résultats	91
4.3. Amélioration des performances dynamique de l'observateur hybride	95
4.3.1. Contraintes de convergence	105
4.3.2. Simulation et résultats	97
4.4. Estimation et commande par retour d'état	105
4.4.1. Analyse	106
4.4.2. Contraintes de stabilité	106
4.4.2.1 Principe de séparation	106

4.4.2.2. Stabilisation du système hybride augmenté		108
4.4.2.2.1. Pr	emière approche	108
4.4.2.2.2. Do	euxième approche	111
4.4.3. Simulation e	t résultats	112
4.5. Conclusion		116

Conclusion Général Bibliographie Annexe

Résumé

Le but de cette thèse est la synthèse d'observateurs pour les systèmes dynamiques hybrides modélisés par les *réseaux de Petri différentiels*. Ces systèmes sont définis structurellement par la coopération de deux sous systèmes, l'un de type continu et le second de type événementiel. Ainsi, ce mémoire débute par une introduction aux notions de l'aspect hybride. Nous poursuivons alors notre préambule par les différentes méthodes de modélisation et d'analyse de stabilité de ces systèmes. La méthodologie de la modélisation des systèmes hybrides par le modèle retenu est également explicitée et illustrée à travers des exemples simulés.

La stratégie d'estimation de l'état hybride s'appuie sur un schéma d'observation combinant un observateur de réseau de Petri et d'un observateur continu de Luenberger en interaction.

A partir du marquage discret initial, l'observateur continu estime l'état continu du système. Ce dernier est exploité par l'observateur discret pour la détection de nouvel évènement.

Ainsi, l'observateur discret restitue le mode discret en estimant le marquage discret et fourni le mode actif à l'observateur continu. Les gains de l'estimation sont calculés pour obtenir une convergence exponentielle de l'observateur continu aussi bien dans le cas ou l'observateur discret détecte correctement le mode que dans le cas échec.

De la même manière que les cas précédents, des approches de synthèse se basant sur la contrainte du temps de séjour sont également prise en considération. Pareillement, En absence de l'état hybride la commande par retour d'état est analysée. Les techniques de la synthèse dans ce cadre s'appuient sur le principe de séparation. Les conditions de stabilisation et d'estimation sont formulées sous forme d'un ensemble d'inégalités matricielles (LMI).