

THESE

Présentée à

L'Université M'hamed Bouguara de Boumerdès

Département d'informatique

Pour l'obtention du DOCTORAT

Spécialité : Informatique

Option : Optimisation des systèmes industriels

Soutenue publiquement Le 02/11/2009, par

Ali BERRICHI

Titre

La gestion à deux niveaux avec optimisation de la production et de la maintenance sous diverses contraintes : cas mono et multicritère.

Jury

Mme Habiba DRIAS	Professeur, USTHB	Présidente
M. Mohamed MEZGHICHE	Professeur, UMBB	Directeur de thèse
M. Farouk YALAOUI	Professeur, UTT, France	Co-Directeur de thèse
M. Lionel AMODEO	Professeur, UTT, France	Examinateur
M. Eric CHATELET	Professeur, UTT, France	Examinateur
M. Rachid AHMED OUAMER	Maître de Conférences, UMMTO	Examinateur

RESUME

L'ordonnancement de la production et la planification de la maintenance sont parmi les problèmes les plus importants et les plus influents dans les systèmes de production industriels. Le non respect du planning de maintenance préventive (MP) par le service ordonnancement peut causer la défaillance des équipements de production et par conséquent l'interruption de la production et la non- satisfaction de la demande. Malgré leur interdépendance, ces deux activités sont généralement planifiées et exécutées séparément dans les systèmes manufacturiers. Ce constat peut être fait aussi dans la littérature relevant du domaine.

La première contribution à cette thèse est le développement d'un modèle bi objectif intégré pour optimiser simultanément l'ordonnancement de la production et la planification de la maintenance. Des modèles de fiabilité ont été introduits pour l'optimisation de l'aspect maintenance. La deuxième contribution à cette thèse est le développement d'algorithmes génétiques multi objectif de type Pareto pour résoudre le modèle intégré. Les solutions obtenues offrent au décideur la possibilité de choisir une solution parmi un ensemble de compromis entre les objectifs de la production et ceux de la maintenance. La troisième contribution est l'introduction de l'optimisation multi objectif par colonies de fourmis pour améliorer la qualité des solutions obtenue par les algorithmes génétiques. Les résultats de simulation sur différents problèmes de test ont montré que les algorithmes basés sur le système des fourmis surpassent deux algorithmes génétiques multi objectif bien connus. Les différents résultats ont fait l'objet de publications dans des journaux et communications.

Mots clés:

Production, Maintenance Préventive (MP), Fiabilité, Optimisation multi objectif, Algorithmes génétiques, Colonies de fourmis.

Remerciements

Table des matières

Liste des Tables

Liste des Figures

INTRODUCTION GENERALE

Chapitre 1. GESTION ET MAINTENANCE DES SYSTEMES DE PRODUCTION	ON
1.1. LES SYSTEMES DE PRODUCTION	5
1.1.1 Définition	. 5
1.1.2 Les objectifs associés	
1.1.3 Les processus de production	
1.1.4 Approche systémique des systèmes de production	
1.1.5 Approche hiérarchique des systèmes de production	7
1.1.6 Typologie des Systèmes de Production	9
1.1.7 Les nouvelles formes d'organisation de la production	10
1.2. LES PROBLEMES D'ORDONNANCEMENT	12
1.2.1 Introduction	12
1.2.2 Description des problèmes d'ordonnancement	
1.2.3 Classification des problèmes d'ordonnancement	
1.2.4 Représentation des ordonnancements	18
1.2.5 Complexité des problèmes d'ordonnancement	19
1.2.5 Les méthodes de résolution	22
1.3. LA MAINTENANCE DES SYSTEMES DE PRODUCTION	23
1.3.1 Concepts de base de la sûreté de fonctionnement	23
1.3.2 La maintenance des systèmes réparables	27
1.3.2.1 La maintenance corrective	28
1.3.2.1.1 Réparation parfaite	28
1.3.2.1.2 Réparation minimale	28
1.3.2.1.3 Réparation imparfaite	28
1.3.2.2 La maintenance préventive	29
1.3.2.2.1 Stratégie de MP dépendant de l'âge ("Age-Based PM	

1.3.2.2.2 Stratégie de MP périodique ("Periodic PM

_				PROBLE TENANC							JOINT
Int	roduct	ion									32
2.1 ET	AT D	E L'Al	RT		•••••					•••••	32
2.2 M	ODEL	ISATI	ON PRO	OPOSEE							35
				nodèle bi o	-	-					
2.	2.2 Le	modèl	e bi obj	ectif intég	ré	• • • • • • • •					37
2.3 LE	S ME	THOD	ES D'O	PTIMISA	TION M	ULTIC	ОВЈЕСТ	TF			
In	troduc	tion .								• • • • • • • •	39
				timisation							
2.	3.2 Cla	assifica	ition de	s méthode	s d'optim	isation	i multi c	bjectif	•••••		42
2.4. Ll	ES AP	PROC	HES TI	RADITION	NELLE	s					43
2.	4.1 La	métho	de de la	somme p	ondérée						43
				ntrainte .							
2.	4.3 L'	Appro	he Min	-Max	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • •				45
2.	4.4 Lir	nites d	e l'app	roche tradi	tionnelle						46
-				ON PAR I							
Int	troduct	ion .	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••				• • • • • • • • • • • • • • • • • • • •	48
3.1 Pr	incipe	des al	gorithm	es génétiq	ues	•••••					48
3.2 Le	s algo	rithme	s généti	ques multi	objectif	(AGM	Os)				49
				Pareto							
				a diversité							
				avec une In dominat							
2 2 C	ractár	istiana	s de 1'A	.GMO pou	r la modè	ala bi o	hiactif i	ntágrá			56
3.5 C				n des solu							
				eproduction							
			_	t							
	3.3.4	La mu	itation								61
	3.3.5	Taille	de la p	opulation,	populatio	on Initi	ale et cr	itères d'	arrêt		61
3.4 Re	ésultats	s et ana	alyses								62
Concl	usion		•••••		• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •			68

Chapitre 4. OPTIMISATION PAR COLONIES DE FOURMIS	
Introduction	70
4.1 L'approche d'optimisation par colonies de fourmis (OCF)	70
4.2 Application de l'approche <i>Pareto Ant Colony Optimization</i> 4.2.1 Codage des solutions	72
4.2.2 Caractéristiques de l'algorithme PACO-1 4.2.2.1 Construction des solutions 4.2.2.1.1 Construction de la solution de maintenance 4.2.2.1.2 Construction de la solution de production 4.2.2.1.3 Mise à jour des traces de phéromone de la partie production	72 73 73 73 73
4.2.2.2 L'algorithme PACO-1	77
4.2.3 Caractéristiques de l'algorithme PACO-2 4.2.3.1 Construction des solutions 4.2.3.1.1 Construction de la solution de maintenance 4.2.3.1.2 Construction de la solution de production 4.2.3.1.3 Mise à jour des traces de phéromone 4.2.3.2 L'algorithme PACO-2 4.2.4 Caractéristiques de l'algorithme SPEA 2	81
4.3 Résultats expérimentaux et analyses 4.3.1 Métriques pour comparer les performances 4.3.2 Problèmes de test et paramètres 4.3.3 Analyse 4.3.3.1 Analyse des métriques de performance 4.3.3.2 Représentation visuelle des ensembles de solutions	88 90 92 92 97
Conclusion	.00
Chapitre 5. CONCLUSIONS ET PERSPECTIVES	
5.2 Conclusions sur la solution par les algorithmes génétiques	03 103 104

REFERENCES

ANNEXES