République Algérienne Démocratique et Populaire

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université de Batna

Faculté des Sciences de l'ingénieur

Département d'Electronique

MEMOIRE

Présenté pour l'obtention du Diplôme de

MAGISTER EN ELECTRONIQUE

OPTION: MICRO-ONDES

Par

GAREH MESSAOUD

Thème

MODELISATION D'UN SYSTEME DE COUVERTURE A BASE D'UNE CONSTELLATION DE SATELLITES ETUDE DU PROBLEME DU HANDOVER

Soutenu le :

Devant le jury composé de :

Dr. Malek BENSLAMA	Professeur	Université de Constantine	Président
Dr. Djamel BENATIA	Maître de Conférences	Université de Batna	Rapporteur
Dr. Moussa BENYOUCEF	Maître de Conférences	Université de Batna	Examinateur
Dr. Nabil BENNOUDJIT	Chargé de Cours	Université de Batna	Examinateur
Dr. Tarek FORTAKI	Chargé de Cours	Université de Batna	Examinateur

RESUME

Les systèmes de communication par les constellations de satellites basses orbites (LEO), exécutent fréquemment des transferts d'appels intersatellite ou *intersatellite handover* pour les utilisateurs mobiles et fixes. Dans ce mémoire on a étudié quelques modèles de distribution de la puissance émise par le satellite dans sa zone de couverture selon sa position relative à l'intérieur de celle-ci.

La distribution de probabilité de la visibilité de multiples satellites a été obtenue analytiquement. La distribution de la distance résiduelle du satellite cible et le nombre moyen de handover intersatellite durant un appel, lorsque plusieurs satellites peuvent être vus simultanément dans le champ de vision du terminal mobile des modèles proposés, ont été calculés et comparés à fin de choisir le modèle qui minimise significativement le taux de tentative de transfert d'appel (handover intersatellite). Cette étude a été faite également sous environnement multi faisceaux (spot beam) de la zone de couverture.

SOMMAIRE

IN'	INTRODUCTION GENERALE		
CE	<u>IAPITRE I</u> : GENERALITES SUR LES SYSTEMES DE CONSTELLATIO	ONS	
	DE SATELLITES (LEOs)		
I.1	Introduction	03	
	I.1.1 Exemple d'une constellation de satellites LEOs	03	
I.2	Description d'une constellation de satellites LEOs	04	
I.3	Architecture du réseau LEO _S	05	
I.4	Principe de communication par les systèmes de constellation	07	
I.5	Gestion de la mobilité radio dans les systèmes LEOs	07	
	I.5.1 Principe de base du Handover	07	
	I.5.2 Gestion du Handover (Phases du Handover)	07	
	I.5.3 Le lancement du Handover	08	
	I.5.4 Types de Handover	09	
	I.5.5 Contrôle du Handover	10	
	I.5.6 Evaluation de la procédure du Handover	16	
CH	IAPITRE II : CARACTERISTIQUES DE CONSTELLATION DE		
	SATELLITES LEOs ET PARAMETRES ORBITAUX		
II.1	Mouvement des satellites dans leurs orbites	18	
	II.1.1 Historique	18	
	II.1.2 Equation de satellite-orbite, première loi de Kepler	19	
	II.1.3 La surface balayé par le satellite par unité de temps, deuxième loi de Kepler	22	
	II.1.4 La période de l'orbite, troisième loi de Kepler	22	
	II.1.5 La vitesse du satellite	23	
II.2	Localisation du Satellite	24	
	II.2.1 Introduction	24	
	II.2.2 Les paramètres de Satellite	24	
	II.2.3 Localisation du satellite par les angles de vision	26	
II.3	Conception de constellation de Satellites	29	
	II.3.1 Considération de conception	29	

	TRANSFERT (HANDOVER) DURANT UN APPEL			
III.1	Visibilité de multiple satellites dans une constellation de satellites	31		
III.2	Présentation du mécanisme du Handover	34		
	III.2.1 Etude comparatif de différentes méthodes	34		
	III.2.2 Modèle de la mobilité	38		
	III.2.3 Environnement de multiples Spot-Beam	42		
<u>CH</u> /	APITRE IV: MODELISATION DU PROBLEME DU HANDOVER,			
	RESULTATS ET DISCUSSIONS			
IV.1	Introduction	46		
IV.2	Visibilité de multiples satellites	46		
IV.3	Distribution de la distance résiduelle	49		
IV.4	Le Nombre moyen de Handover Inter Satellitaire durant un appel	49		
	IV.4.1 Environnement normal	49		
	IV.4.2 Environnement Spot-Beam	56		
CON	NCLUSION GENERALE	59		

CHAPITRE III: OPTIMISATION DU NOMBRE DE TENTATIVES DE