ECOLE NATIONALE SUPERIEURE DES MINES DE SAINT ETIENNE

Nº d'ordre: 158 ID

THESE présentée

pour obtenir le grade de DOCTEUR EN SCIENCE de

L'UNIVERSITE JEAN MONNET et de L'ECOLE NATIONALE SUPERIEURE DES MINES DE SAINT ETIENNE

Spécialité: Informatique

PAR

Mustapha Boukhalfa HADIM

Sur une Méthode de Routage des Messages dans les Architectures Parallèles à Mémoire Distribuée: Application à la Grille Torique

Soutenue le 30 Juin 1997 devant la Commission d'examen composée de

Mr.	Bernard PEROCHE	Président
Mr.	Joffroy BEAUQUIER	Rapporteur
Mr.	Yousef SAAD	Rapporteur (excusé)
Mme.	Marie-Claude HEYDEMANN	Examinateur
Mr.	Jean-Claude KÖNIG	Examinateur
Mr.	Jean AZEMA	Examinateur
Mr.	Jean-Jacques GIRARDOT	Examinateur
Mr.	Ibrahima SAKHO	Directeur

Résumé

Dans les architectures parallèles à mémoire distribuée, la communication entre processus est un des facteurs de performance les plus importants pour les applications. Le système qui en a la charge, i.e, le noyau de communication, doit intégrer une fonctionnalité essentielle pour de telles architectures : le routage des messages. Cette fonctionnalité est assurée par une composante spécifique du noyau de communication : le noyau de routage, dont le rôle est l'acheminement d'un message d'un nœud émetteur vers un nœud récepteur.

L'acheminement des messages nécessite une stratégie de routage qui spécifie les chemins de communication pour toute paire de processeurs (source, destination) du réseau d'interconnexion. Une telle stratégie de routage doit satisfaire d'une part, des critères de correction et d'autres part, des critères d'efficacité.

Le but de cette thèse est la conception de stratégies de routage pour les réseaux de processeurs qui satisfont à la fois, les critères de correction et les critères d'efficacité. Nous proposons une méthode de conception de stratégies de routage, permettant par une démarche incrémentale, de satisfaire les deux types de critère: la communication multi-niveaux et le schéma de communication primaire associé.

Pour mesurer l'efficacité de la méthode, nous l'appliquons à un réseau particulier : la grille torique. Les différents algorithmes de routage obtenus sont corrects et très efficaces.

Nous proposons également une technique d'implantation de notre méthode de routage, permettant le calcul des tables de routage directement sur le réseau de processeurs. Cette technique permet ainsi l'obtention d'un système autoconstructif.

Mots clés: Architectures parallèles, Communication, Routage des messages, Communication multi-niveaux, Schéma de communication primaire, Grille torique.

Abstract

In distributed memory parallel architectures, interprocess communication is one of the main efficiency factor for the applications. The system which is in charge of this task, i.e, the communication kernel, must integrate an essential functionality for such architectures: message routing. This functionality is ensured by a specific component of the communication kernel: the routing kernel, whose purpose is to convey a message from a sender node to a receiver node.

Messages conveying requires a routing strategy which specify the communication paths for each pair of (source, destination) processors of the interconnection network. Such routing strategy must satisfy in one hand, correction criteria and in other hand, efficiency criteria.

The purpose of this thesis is the design of routing strategies for networks of processors, which satisfy at the same time, correction criteria and efficiency criteria. We propose a method to design routing strategies, which allows by an incremental approach, to satisfy both of the criteria: the multi-level communication and the associated primary communication scheme.

To prove the efficiency of the method, we apply it to a particular topology: The *torus* network. The several obtained routing algorithms are correct and very efficient.

We propose also a technique to implement our routing method, which allows to compute the routing tables directly on the target network processors. Thus, this technique allows to obtain a *self constructing* system.

Keywords: Parallel architectures, Communication, Message routing, Multi-level communication, Primary communication scheme, Torus network.

Table des matières

R	ésum	ıé	i
A	bstra	act	ii
R	emei	ciements	iii
T	able	des matières	v
1	Inti	roduction générale	1
	1.1		1
	1.2	Les architectures parallèles	4
	1.3		6
		1.3.1 Le partitionnement	6
		1.3.2 L'allocation et l'ordonnancement	7
		1.3.3 Le contrôle des communications et synchronisations	7
	1.4	Problématique et apport de la thèse	9
	1.5	Organisation du mémoire	11
I	Ac	cheminement des Messages par Routage	12
2	Eta	t de l'art sur le routage des messages	13
	2.1	Spécification du problème de routage	13
	2.2	Une classification des solutions	15
	2.3	Les types de routage	15
	2.4	Les mécanismes de routage	17
		2.4.1 Les techniques de commutation de données	18
		2.4.2 Le contrôle de flot	21
	2.5	Les stratégies de routage	22
		2.5.1 Le routage avec des tables de routage compactes	26
		2.5.2 Le routage hiérarchique	27

		2.5.3 Le routage par préfixes	28		
	2.5.4 Le routage par intervalles				
	2.6 Les principaux problèmes de routage				
		2.6.1 L'interblocage	31		
		2.6.1.1 Interblocage et graphe de dépendance	32		
		2.6.1.2 Les méthodes de détection-guérison	35		
		2.6.1.3 Les méthodes préventives	36		
		2.6.2 Les pannes physiques	39		
		2.6.3 La congestion, la famine et le refus des messages	40		
	2.7	Conclusion	45		
3	De	l'antagonisme des critères de routage	47		
	3.1	Corrélation entre les critères de routage	48		
	3.2	Conception de stratégies de routage	51		
	3.3	Proposition d'une méthode	53		
	3.4	Interblocage et élongation des chemins	55		
II	T	ne Méthode de Routage	56		
	_	20 1.100120 40 40 100 40080	•		
4	Mo	dèle et définitions	57		
5	La	communication multi-niveaux	62		
	5.1	Organisation du chapitre	62		
	5.2	Le principe de la communication multi-niveaux	62		
5.3 Propriété caractéristique de la communication multi-niveaux					
	Modélisation de la communication multi-niveaux	70			
	5.5	Application 1: la communication multi-niveaux selon les règles de			
		routage par cycle eulérien	72		
		5.5.1 La méthode de routage par cycle eulérien	73		
		5.5.2 Application à la grille torique	74		
		5.5.2.1 Un algorithme de routage dans les grilles toriques 5.5.2.2 Un second algorithme de routage dans les grilles	77		
		toriques	86		
	5.6	Application 2: La communication multi-niveaux selon le routage			
		$e ext{-}cube$	87		
	5.7	Interprétation des résultats	87 89		

6	Implantation de la communication multi-niveaux			90		
	6.1	Une in	nplantation distribuée	90		
	6.2	Un alg	gorithme distribué de calcul d'un cycle eulérien dans un réseau	1 92		
		6.2.1	Le principe de l'algorithme	92		
		6.2.2	Correction de l'algorithme	96		
		6.2.3	Le code de l'algorithme	99		
		6.2.4	Les performances de l'algorithme	103		
	6.3	Le cal	cul des tables de coût et de routage	103		
7	Un	schém	a de communication primaire	112		
	7.1	Introd	uction	112		
	7.2	Routa	ge sans interblocage dans un anneau	113		
	7.3	La mé	thode de dérivation de graphe de dépendance acircuitique.	115		
		7.3.1	Définitions et Notations	115		
		7.3.2	Le principe de la méthode	116		
		7.3.3	Une heuristique pour le calcul du graphe de dépendance.	120		
		7.3.4	- · · · · · · · · · · · · · · · · · · ·	124		
		7.3.5	Le calcul de la fonction de routage	125		
	7.4	Correc	ction de la méthode			
	7.5		cation de la méthode aux tores de dimension 2			
	7.6	~ ~	ısion	136		
Co	onclu	ısion g	énérale et perspectives	138		
II	I A	Annez	re 1	142		
A	The	Multi	-Level Communication: Minimal, Deadlock Free, Sto-			
-	rage	e Opti	mal Routing for Torus Networks [50]	143		
В	Min	imal,	Deadlock Free and $O(n)$ Space Memory Routing for	•		
	k-ar	y <i>n</i> -cu	bes with Wraparound Connections [52]	170		
Bi	bliog	graphie		181		
Ta	able des figures 189					