REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Ecole Nationale Polytechnique

D.E.R de Génie Electrique et Informatique Département d'Electronique

THESE DE MAGISTER

en

Electronique Appliquée

Option

Acquisition et traitement de l'information

présentée par

BENSAID Houcine

Ingénieur d'Etat en Electronique

7hème

Synthèse des Filtres Numériques R.I.I. par la Méthode des Moindres Carrés Vrais (MCV).

Soutenue publiquement le: 22 juin 1999

Devant le jury composé de :

M. D. BERKANI Professeur (ENP) Président
M. A. BELOUCHRANI Docteur d'état (ENP) Rapporteur
M. M. TADJINE Docteur d'état (ENP) Examinateur
Mme. L. HAMAMI Chargé de Cours (ENP) Examinateur
M. R. ZAKNOUNE Docteur d'état (EMP) Examinateur

ملخص

الهدف من هذا العمل هو تركيب مرشحات عددية ذات الإستجابة الدفعية الامتناهية باستعمال طريقة المربعات الصغرى الحقيقية. في هذا الإطار، قمنا بتحليل هذه الطريقة مرتكزين على الفكرة الأولية التي إقترحها "ستايقلتز" و "ماك برايد" لتشخيص الأنضمة الآلية. لقد قمنا أيضا بتطبيق هذه الطريقة لتركيب المرشحات العددية و تقليص رتبة النماذج.

تظهر لنا فعالبة هذه الطريقة من خلال النتائج المحصل عليها وكذالك مقارنتها بتلك التي تعطيها طريقة "بادي" و طريقة المربعات الصغرى المعدلة.

المفاتيع: المرشحات العددية ذات الإستحابة الدفعية الامتناهية، تركيب المرشحات، طريقة المربعات الصغرى المعدلة، طريقة المربعات الصغرى المغلقية.

Résumé

L'objectif du présent travail est la synthèse de filtres numériques récursifs (filtres RII) par la méthode des moindres carrés vrais (MCV).

Dans ce cadre, nous avons développé la méthode (MCV), en nous basant sur une idée de Steiglitz et McBride propsée initiallement pour l'identification des système en automatique Nous avons appliqué la méthode MCV pour la synthèse de filtres numériques RII et aussi pour la réduction de modèles.

L'efficacité de la méthode est observée à travers de nombreuses simulations et aussi par comparaison avec les méthodes de Padé et des moindres carrés modifiés (MCM).

Mots clés: Filtres numériques récursifs (filtres RII), Synthèse des filtres, Méthode des Moindres Carrés Modifiés (MCM), Méthode des Moindres Carrés Vrais (MCV).

Abstract

The aim of this work is the study of the True Least Squares method (TLS) and its application to the synthesis of recursive digital filters (IIR).

In this context, we have developed the TLS method, based on an original idea proposed by Steiglitz et McBride for system identification in control.

We have applied the TLS method to the synthesis of recursive digital filters and model reduction.

The efficiency of the TLS method is clearly shown by the simulation results on several examples and comparisons with Padé and modified least squares (MLS) methods.

Key words: Recursive digital filters (IIR filters), Filter synthesis, Modified Least Squares (MLS) Method, True Least Squares (TLS) Method.

Table des matières

1	Intr	roduction	1
	1.1	Introduction	1
	1.2	Introduction au filtrage numérique	2
	1.3	But et présentation du travail	2
	1.4	Organisation de la thèse	4
2	Le l	Filtrage Numérique	5
	2.1	Introduction	5
	2.2	Représentation des filtres numériques	6
	2.3	Analyse des filtres numériques	6
		2.3.1 Analyse temporelle	7
		2.3.2 Analyse fréquentielle	8
	2.4	Stabilité des filtres numériques	ί1
	2.5	Classification des filtres numériques	L2
		2.5.1 Les filtres RIF	13
		2.5.2 Les filtres R.I.I.	13
		2.5.3 Comparaison entre filtres RIF et RII	14
	2.6	Synthèse des filtres numériques	ι4
	2.7	Synthèse des filtres non-récursifs (R.I.F)	15

	TABL.	DES MATIÈRES	iv
		2.7.1 Méthode d'échantillonnage fréquentiel	15
		2.7.2 Méthode de fenêtrage	
	0.0		
	2.8	Synthèse des filtres récursifs (R.I.I)	
		2.8.1 Méthode d'invariance de la réponse impulsionnelle	
		2.8.2 Méthode de la transformation bilinéaire	
		2.8.3 Méthode d'optimisation	. 18
3	Syn	hèse par les Méthodes de Padé et MCM	19
	3.1	Introduction	. 19
	3.2	La méthode de Padé	. 21
		3.2.1 Principe	. 21
		3.2.2 Procédure de synthèse	. 23
	3.3	Méthode des Moindres Carrés Modifiés	. 24
		3.3.1 Principe	. 24
		3.3.2 Procédure de synhèse	. 24
4	La l	léthode des Moindres Carrés Vrais (MCV)	31
	4.1	Introduction	. 31
	4.2	Développement théorique du cas général MCP	. 31
		4.2.1 Etude et résolution du problème	. 31
		4.2.2 Calcul des matrices R_k	. 39
	4.3	Etude de la méthode des moindres carrés vrais (MCV)	45
	4.4	Synthèse des filtres numériques RII par la méthode des moindre carrés vrais (MCV)	. 48
5	Exe	aples de Synthèse	51
	5.1	Introduction	51
		iv	

_1	ABL	E DES MATIÈRES	v		
	5.2	Application à la synthèse des filtres	52		
		5.2.1 Synthèse de filtres passe-bas	52		
		5.2.2 Synthèse de filtres passe-haut	53		
		5.2.3 Synthèse de filtres passe-bande	53		
	<i>5.3</i>	Application à la réduction de modèles	54		
	5.4	Commentaires	54		
	Con	clusion Générale	77		
		•••	00		
A	Algo	orithme de Horner	83		
В	Algo	orithme de Levinson-Durbin	84		
~					
С	Algo	orithme de Mullis-Roberts	85		
D	Alge	orithme de Levinson à deux canaux (bicanal)	86		
${f E}$	Alge	orithme de Sylvester	87		
F	Alge	orithme de Jury	89		