

Probleme du mot des monoides présentés par un seul relateur

G. WATIER

Thèse de l'Université Denis Diderot - Paris VII Litp Th96/01 Février 1996

> LABORATOIRE INFORMATIQUE THÉORIQUE ET PROGRAMMATION

THÈSE

présentée à

L'Université de Paris 7

pour l'obtention du titre de

Docteur de l'Université de Paris 7

spécialité

Informatique

par

GUILLAUME WATIER

sur le sujet

Problème du mot des monoïdes présentés par un seul relateur

LITP - IBP

soutenue le 23 janvier 1996 devant le jury composé de Messieurs

Jacques Sakarovitch
Christian Choffrut
Hubert Comon
Géraud Sénizergues
Maxime Crochemore
Friedrich Otto
Jean-Eric Pin
Président
Directeur
Rapporteur
Rapporteur
Examinateur
Examinateur
Examinateur

Résumé

Soit un monoïde admettant une présentation à un seul relateur

$$< A; u = v >$$

où u et v sont des mots sur l'alphabet A. Il n'a pas encore été montré que le problème du mot d'un tel monoïde soit décidable en toute généralité, bien qu'une conjecture existe dans ce sens.

Nous présentons le problème, les approches utilisées dans la littérature et celles envisageables. Nous dégageons ensuite des propriétés générales sur certaines factorisations de mots, propriétés qui ont leur intérêt propre dans la combinatoire des mots. Enfin nous appliquons ces dernières à notre problème dans le cas où le mot u est un mot qui ne se chevauche pas avec lui-même. Pour ce cas - qui, nous le verrons, concerne une très large classe de présentations - la meilleure contribution apportée jusqu'ici autorise à décider le problème si le mot u apparaît en facteur dans le mot v. Nous étendons ce résultat en supprimant la contrainte u apparaît en facteur dans v sous réserve que la longueur de v soit au moins le carré de celle de u.

Abstract

Let M be a monoid having a single relator presentation

$$< A; u = v >$$

where u and v are words on the alphabet A. Generally speaking, the word problem for M has not yet been proved decidable, though there is a conjecture in this direction.

We introduce the problem, the ways it has formerly been handled and how it could now be treated. Then, we show general properties about some factorisations of words, properties that have their own interest in combinatorics of words. We apply them to our problem in the case when the word u is not self-overlapping. In this case - which, as we shall show, concerns a large class of presentations - the best contribution up to now states that the word problem is decidable if the word u is a factor of v. We extend this result by suppressing the condition "u is a factor of v" provided that the length of v is at least the square of the length of u.

Table des matières

1	Intr	roduction	9											
2	Notations et définitions													
	2.1	Mots, monoïde libre	15											
	2.2	Langages rationnels	17											
	2.3	Codes	17											
	2.4	Relations binaires	18											
	2.5	Réécriture	18											
	2.6	Présentations et problème du mot	20											
3	App	proches possibles du problème	23											
	3.1	Par système de réécriture complet	23											
		3.1.1 Par système de réécriture fini convergent	24											
		3.1.2 Par système de réécriture infini convergent	24											
	3.2	Par finitude résiduelle	25											
	3.3	En réduisant le problème	25											
	3.4	En étudiant la divisibilité gauche												
4	La procédure d'Adjan 3													
	4.1	Décider la divisibilité gauche suffit	31											
	4.2	Le semi-algorithme d'Adjan	31											
5	Propriétés sur les mots													
	5.1	Propriétés sur un mot et ses facteurs	41											
	5.2	Propriétés du code $\mathcal{P}_{\overline{i}}$												
6	< A	u : v > où u est sans bord	57											
	6.1		58											
	6.2	Résultats de décidabilité												

6							TA	\ E	3L	E	L)E	S	Λ	1 A	47	ΓI .	ΕI	RES	
7	Per	spectives																		91
8	AN	NEXE: calcul de P																		93
	8.1	Enoncé du problème																		93
	8.2	Algorithme linéaire																		94