République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

> Université de CONSTANTINE Institut d'INFORMATIQUE

THESE

Présentée pour obtenir le titre de

MAGISTER

Par LEILA RIMA

thème

VIBDOT

UN SYSTEME EFFICACE DE VERIFICATION DE L'INTEGRITE
D'UNE BASE DE DONNEES DEDUCTIVE
FONDE SUR
LES CONTRAINTES DYNAMIQUES ET
LES TRANSFORMATIONS LOGIQUES

Devant le jury:

Mr	M.BETTAZ	Pr	U. Constantine	(Président)
Mr	N.BOUDRIGA	Pr	U. Tunis	(Rapporteur)
Mr	K.BARKAOUI	Mc	CNAM. Paris	(Examinateur)
Mr	B.BELATTAR	Cc	U. BATNA	(Examinateur
Mr	M.MAOUCHE	Cc	U. Constantine	(Examinateur)
Mr	M.BOUFAIDA	Сc	U. Constantine	(Examinateur)

RESUME:

L'objectif de cette thèse est la conception et l'implantation d'un système appelé VIBDOT destiné à la vérification de l'intégrité d'une base de données déductive optimisée par des techniques de transformations logiques.

l a majorité des systèmes de vérification, Comme l a données initiale est intègre afin de ne base de suppose que que les instances de contraintes d'intégrité affectées vérifier suite à une opération de mise à jour.

élémentaires (dépliage, Les compositions de transformations pliage et application de propriétés) sont appelées des cas, à l'amélioration dernières contribuent, dans de nombreux de l'efficacité de programmes ne contenant pas de négation, dits "définis". Ceci est réalisé en · obtenant des définitions récursives.

VIBDOT étant un nouveau système, repose principalement sur couplage de bases de données déductives et des techniques logiques. Il améliore ainsi transformations de programmes l a vérification de l'intégrité d'une base de données déductive définie.

MOTS CLES:

Bases de données déductives, contraintes d'intégrité, intégrité de la base, programmation logique, Transformations logiques.

ABSTRACT:

The aim of the present thesis is to design and implement a system which will check the integrity of a deductive database following an optimization using logical transformation techniques. The system is named VIBDOT.

VIBDOT a 6 most checking systems, will take the being integre, so that as a result of an database ав affected instances of integrity operation only the constraints will be checked.

of Combinations elementary transformations (unfold fold. properties application) are called "tactics". Theses combinations i n many cases, to the improvement οſ the contribute, programs. This i s performed after the obtention of recursion definitions.

۸s a new system, VIBDOT mainly relies on coupling together the deductive databases and the logical program transformation techniques. This way, the checking of the of a defined deductive database is better improved.

KEY WORDS:

Deductive data dases, Integrity constraints, Integrity of data base, Logical programming, Logical transformations.

SOMMAIRE

Introduction.

Ch	apit	re 1 Bases de donné	es déductives et contraintes	1		
		d'intégrité.	•			
	1.1 Concepts de bases.					
	1.2 Bases de données déductives.					
	1.3	Les contraintes d'i	ntégrité.	6		
		1.3.1 Base de donn	ées déductive à contraintes.	6		
		1.3.2 Satisfaction	de contraintes d'intégrité.	6		
		1.3.3 Les différen	tes formes de représentation	7		
		de contraint	es.			
	1.4	Les méthodes de rés	colution.	9		
		a. La résolution S	LD.	9		
		b. La résolution S	LDNF.	11		
Ch	apit	re 2 Etude des méth	odes de v érification	15		
		de contraintes	d'intégrité.			
	2.1	Présentation de que	lques méthodes de vérification	16		
		2.1.1 Méthode de D	AS-WILLIAMS.	16		
		2.1.2 Méthode de S	ADRI-KOWALSKI.	22		
		2.1.3 Méthode de B	RY-DECKER.	27		
		2.1.4 Méthodes de	DECKER et de LLOYD-TOPOR.	32		
	2.2	Etude comparative.		37		
		2.2.1 Comparaison	des méthodes se basant sur la	÷-		
		génération d	les espaces de chemins.			
		2.2.2 Comparaison	des méthodes se basant sur le calcul	40		
		de m.a.j com	plètement ou partiellement instancié	es.		

2	2.3	Résult	ats.	41
2	. 4	Conclu	sion.	44
Cha	piti	re 3 L	es transformations logiques.	45
3	. 1	Les tra	ansformations élémentaires.	46
		3.1.1	Le dépliage.	46
		3.1.2	Le pliage.	46
		3.1.3	Nouvelle définition.	47
		3.1.4	Les propriétés.	47
		3.1.5	Application d'une propriété.	48
3	. 2	Les ta	ctiques.	48
		3.2.1	Concepts de base.	49
		3.2.2	La tactique de saturation.	52
		3.2.3	La méthode d'ALEXANDRE.	56
			3.2.3.1 Concepts de base.	56
			3.2.3.2 Condition de succes du pliage.	61
			3.2.3.3 Description de la méthode d'ALEXANDRE.	65
		3.2.4	La tactique de généralisation basée sur les	68
			schémas.	
		3.2.5	conclusion.	70
3	3.3	Exempl	es d'application de propriétés.	71
3	3.4	Correspondance avec les bases de données déductives		
		et sen	s d'amélioration.	
3	. 5	Conclu	sion.	76

Chapit	re 4 Méthode proposée et fonctionnement du système				
	VIBDOT.	77			
4.1	4.1 Les opérations appliquées sur la B.D.				
4.2	Preuve d'équivalence et de vérification d'intégrité	81			
	dans B et B _{op} .				
4.3	4.3 présentation du système VIBDOT.				
	4.3.1 Cadre du système VIBDOT.	85			
	4.3.2 Architecture du système VIBDOT.	. 86			
4.4	Vérification de l'intégrité d'une base de données	91			
	par le système VIBDOT.				
	4.4.1 La phase préparatrice.	92			
	4.4.2 La phase d'évaluation.	95			
	4.4.3 La phase d'optimisation.	96			
	\cdot				
	·				
Chapit	re 5 Algorithmes et implémentation.	97			
5.1	Les différents algorithmes.	97			
	5.1.1 phase préparatrice.	97			
	5.1.2 phase d'évaluation.	102			
	5.1.1 phase d'optimisation.	102			
5.2	Implémentation.	106			
	5.2.1 phase préparatrice	107			
	5.2.2 phase d'évaluation .	112			
	5.2.3 phase d'optimisation.	112			

Conclusion.

Bibliographie.