SYNTHESIS AND EVALUATION OF GEMFIBROZIL AND NICOTINIC ACID CODRUG FOR IMPROVING THE LIPID PROFILE

By Meriem Rezigue

Prof. Bassam M. Tashtoush (Advisor)

Dr. Amjad M. Qandil (Co-Advisor)

Thesis submitted in partial fulfillment of the requirements for the degree of M.Sc. in Pharmaceutical Technology

At

The Faculty of Graduate Studies

Jordan University of Science and Technology

SYNTHESIS AND EVALUATION OF GEMFIBROZIL AND NICOTINIC ACID CODRUG FOR IMPROVING THE LIPID PROFILE

By Meriem Rezigue

Signature of Author		
Committee Member		Signature and Date
Prof. Bassam M. Tashtoush	(Chairman)	
Dr. Amjad M. Qandil	(Co-Advisor)	
Prof. Mutaz Sheikh Salem	(Member)	
Dr. Hatim S. Al-Khatib	(External Examiner)	

DEDICATION

To the one who cares for me, whose guidance I value, who I count on to help me.......To my DAD.

To Whom I share my laughs and tears, the warmth, friendship and support........**To my sisters and brothers.**

ACKNOWLEDGMENTS

First, all the thanks belongs to Allah in whom I believe, and to whom I owe everything I have and everything I will have.

My deepest gratitude goes to my wonderful parents, who have raised me to be the person I am today, for being with me every step of the way through good and bad times. I want to thank them for their never ending love, guidance and support that they give me always.

Special appreciation to my beloved sisters and brothers; Hamza, Khawla, Abd-Assatar, Hafsa and Rahma.

I owe my deep gratitude towards my supervisor Prof. Bassam Tashtoush for providing me an opportunity to work with him, for his guidance, continues support and encouragement.

I would like to express my sincere appreciation to my coadvisor Dr. Amjad Qandil for his hard work, kindness and guiding me through every step of my thesis work.

My special thanks go to my committee members Prof. Mutaz Sheikh Salem and Dr. Hatim Al-khatib.

I am grateful to thank Mr. Eiad Hamza and Mr. Farouk Al-Zghoul, for their cooperation and help in HPLC analysis during this study and to Mr. Ashraf Mutlag for the MS analysis.

My sincere thanks go to Ms. Sawsan Mayyas for her kindness, support and encouragement.

I would like to thank my friends and colleagues for their helpful collaboration, endless friendship and for sharing me lovely, wonderful and unforgettable memories in Jordan.

Finally, my sincere thanks go to all the members of the faculty of pharmacy in Jordan University of Science and Technology (JUST).

TABLE OF CONTENTS

	<u>Pages</u>
DEDICATION	I
ACKNOWLEDGMENTS	II
TABLE OF CONTENTS	III
LIST OF FIGURES	VII
LIST OF TABLES	XI
LIST OF SCHEMES	XIII
ABSTRACT	XIV
CHAPTER ONE: INTRODUCTION	1
1.1. Hyperlipidemia; An Overview	1
1.2. Drug Therapy for Hyperlipidemia	3
1.2.1. Fibric Acid Derivatives or Fibrates	4
1.2.2. Gemfibrozil	6
1.2.2.1 Pharmacological Action and Mechanism of Action of	7
Gemfibrozil	
1.2.2.2 Pharmacokinetics of Gemfibrozil	8
1.2.2.3 Gemfibrozil Side Effects	9
1.2.3. Nicotinic Acid	10
1.2.3.1. Pharmacological Action of Nicotinic Acid	11
1.2.3.2. Pharmacokinetics of Nicotinic Acid	13
1.2.3.3. Toxicity and Side Effect of Nicotinic Acid	13
1.2.3.4. Nicotinic Acid Formulations	15
1.2.4. Fibrates and Niacin Combination Therapy in	16
Hyperlipidemia	
1.2.4.1. Effect of Combination Therapy on Pharmacokinetics	17
1.2.4.2 Combination of Nicotinic Acid and Gemfibrozil	18

1.3. Prodrug and Codrug Approachs	20
1.3.1. Definition and classification of prodrugs	20
1.3.2. Codrug or Mutual Prodrug Approach	22
1.4. Approaches to enhance Gemfibrozil Efficacy	25
1.5. Nicotinic Acid Prodrugs	29
1.5.1. Fluorinated Nicotinic Acid Esters	29
1.5.2. Alkyl Nicotinate Prodrugs	30
Chapter Two: Objectives and Rationale	33
Chapter Three: Experimental	
3.1. Materials	35
3.2. Basic Equipments	35
3.3. Chemistry of the Codrug	37
3.3.1 2-Hydroxyethyl 5-(2,5-dimethylphenoxy)-2,2-	37
dimethylpentanoate (1)	
3.3.2 4-Hydroxybutyl 5-(2,5-dimethylphoenoxy)-2,2-	37
dimethylpentanoate (2) and 6-hydroxyhexyl 5-(2	,5-
dimethylphenoxy)-2,2- dimethylpentanoate (3)	
3.3.3 2-(5-(2,5-Dimethylphenoxy)-2,2-dimethylpentan	oyloxy)ethyl 39
nicotinate (4)	
3.3.4 2-Hydroxyethyl nicotinate (5)	40
3.4. Analysis of the Codrug	40
3.4.1 Method of Analysis of Codrug and Degrada	tion products 40
3.4.2 Preparation of standard solutions	41
3.4.3 Method Validation	42
3.5. Physico-chemical Properties of Codrug	42
3.5.1. Aqueous and Organic Solubility	42
3.5.2 Apparent Partition Coefficient and pKa	42
3.6. Chemical hydrolysis	43
3.7. In Vitro Enzymatic Hydrolysis	44
3 7 1 In vitro Enzymatic Hydrolysis in Human Plac	yma 45

	3.7.2. In vitro Enzymatic Hydrolysis in 20 % Liver Homogenate	45
	3.7.2.1. Preparation of Liver Homogenate	45
	3.7.2.2. Hydrolysis of codrug in 20 % Liver Homogenate	46
	3.7.2.3 Hydrolysis of gemfibrozil 2-hydroxyethyl ester in 20 %	46
	Liver Homogente	
Cha	pter Four: Results and Discusion	47
4.1.	Chemistry of the Codrug	47
	4.1.1. Chemistry Description	47
4.2.	HPLC Method Validation	50
	4.2.1. Linearity	50
	4.2.2. Selectivity	53
	4.2.3. Accuracy	57
	4.2.4. Precision	59
	4.2.5. Recovery	62
	4.2.6. Limit of Detection (LOD) and Limit of Quantification	63
	(LOQ)	
4.3.	Physico-chemical Properties of Codrug	64
	4.3.1. Aqueous and Organic Solubility	64
	4.3.2. Apparent Partition Coefficient and pKa	66
4.4.	Chemical hydrolysis	67
	4.4.1. Choosing the Cosolvent	69
	4.4.2. Ordre of Reactions	70
	4.4.3. Effect of pH on Hydrolysis of Codrug	73
	4.4.4. Effect of Temperature on Hydrolysis of Codrug	76
	4.4.5. Kinetics of the Gemfibrozil 2-hydroxyethyl ester	79
4.5.	In Vitro Enzymatic Hydrolysis	84
	4.5.1. In vitro Enzymatic Hydrolysis in 10 % Buffered Human	85
	Plasma	
	4.5.2. In vitro Enzymatic Hydrolysis in 20 % Liver Homogenate	87
Cha	pter Five: Conclusion and Future Work	91
Ref	erences	93

Appendix No. (1)	103
Appendix No. (2)	141
Arabic Abstract	154