République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université des Sciences et de la Technologie Houari Boumediene

Faculté d'Electronique et d'Informatique

Département informatique

Mémoire de Master

Filière Informatique

Spécialité

Réseaux et systèmes distribués

Thème

Algorithmes génétiques sur plateformes de calcul volontaire, application au Flow-Shop de permutations

Présenté par: M^r BENGLIA Houssam et M^{elle} DAHAMNI Sonia **Soutenu le** 18/06/20

Encadreurs : Mme Malika SILHADI MEHDI Maitre de recherche (CERIST)

Mr Ahcene BENDJOUDI Maitre de recherche (CERIST)

Co-promoteur : Mr M.BOUKALA Maitre de conférences (USTHB)

Devant le jury composé de :

Président : M^r M.DJOUADI

Membres: M^{me} Z.BENBAZIZ

M^{me} K.BOUIBEDE

Remerciements et dédicaces

Nous présentons notre profonde gratitude et sincères remerciements :

A Madame M.MEHDI et Mr A.BENDJOUDI, qui, en tant que promoteurs, se sont toujours montré à l'écoute et très disponible tout au long de la réalisation de ce mémoire, ainsi que pour l'inspiration, l'aide et le temps qu'ils ont bien voulu nous consacrer et sans qui ce mémoire n'aurait jamais vu le jour, merci.

A Monsieur BOUKALA, notre co-promoteur, de son immense générosité, de de son écoute, de sa bonne direction, et son apport technique, merci.

A tous nos camarades bénévoles qui ont apporté leur soutien à travers ce projet en contribuant avec leurs machines.

Nous tenons aussi à remercier Mr Djouadi présient du jury pour l'honneur qu'elle nous a fait acceptation de juger notre travail ainsi que Mme BENBAZIZ et Mme bouibed membres de jury pour avoir accepté d'assister et examiner notre modeste travail.

A tous ceux qui ont participé de prés ou de loin à la réalisation de ce travail. Encore une fois merci à tous On dédie ce mémoire, à nos familles et à tous nos amis et à nous mutuellement.

Houssam et Sonia

Sommaire

Introduction Générale	1
CHAPITRE 1 : Généralités sur les archite	ctures distribués
1. Introduction.	3
2. Architectures de calcul distribué	3
2.1. Superordinateurs	3
2.2. Grappe de calcul	4
2.3. Grille de calculs	5
2.4. Desktop Grid	7
2.5. Calcul par volontariat	
3. Quelques projets fondateurs	10
3.1. Condor	10
3.2. XtremWeb	11
4. Conclusion	12
CHAPITRE 2: BOINC : Un intergiciel po	ur le calcul volontaire
1. Introduction	13
2. Présentation sur BOINC	13
2.1. Participation aux projets	14
3. Fonctionnement général	15
3.1. Générateur d'unités	15
3.2. Purger BDD	16
3.3. Ordonnanceur	16
3.4. Gestionnaire d'états	16
3.5. Le validateur	16
3.6. Assimilateur	17
3.7. File deleter	17
3.8. Base de données MvSOL	18

3.9. Cycle de vie d'une unité de travail	18
3.10. Sécurité	18
3.10.1. Sécurité des machines clientes	19
3.10.2. Sécurité du projet	20
3.11. Site Web	21
3.12. Système de crédit	21
3.13. Tolérance aux fautes	21
4. Conclusion	22
CHAPITRE 3 : Algorithme génétique	
1. Introduction	23
2. Optimisation combinatoire	23
2.1. Méthodes de résolution	24
2.1.1. Méthodes exactes	24
2.1.2. Méthodes approchées	25
2.2. L'approche de recherche locale (méthodes à solution uniques)	26
2.2.1. Les méthodes de descente	26
2.3. L'approche évolutionnaire	27
2.4. L'approche hybride	27
3. Les algorithmes génétiques	28
2.5. Présentation.	28
2.6. Fonctionnement générale	28
2.7. Description des algorithmes génétiques	29
2.7.1. Codage	29
2.7.2. Population initiale	30
2.7.3. Evaluation	
2.7.4. Sélection	30
2.7.4.1. La méthode de la roulette	
2.7.4.2. La sélection par rang	
2.7.4.3. La méthode élitiste	31

2.7.4.4. La sélection par tournois	32
2.7.5. L'opérateur de croisement ou crossover	32
2.7.6. La mutation	33
2.7.7. Le remplacement	33
2.7.8. Critère d'arrêt	33
2.8. Modèles de parallélisation pour les AGs	33
2.8.1. Modèle Maitre-Esclave	33
2.8.2. Modèle insulaire	35
2.8.3. Modèle cellulaire	35
2.8.4. Modèle hiérarchique	36
4. Etude des algorithmes évolutionnaires sur des plates-for	mes de calcul volontaire37
5. Conclusion	38
CHADITDE A. Concention	
CHAPITRE 4 : Conception	
1. Introduction	
2. Le problème du Flow-Shop de permutation	
2.1. Description du problème de Flow-Shop	
2.2. Solution au problème du Flow-Shop	39
3. Conception de l'AG séquentiel	40
3.1. Codage (représentation du probléme)	40
3.2. Opérateurs génétiques	40
4. Hybridation de l'AG avec la recherche locale	42
4.1. Algorithme de la méthode de recherche locale (Hill climb	ning) 13
4.2. Description de l'algorithme	<u> </u>
4.3. Algorithme génétique hybridé séquentiel	
4.4. Description de l'algorithme	
5. Besoin en puissance de calcul	
5.1. Parallélisation de l'AG hybridé dans BOINC	
·	
5.1.1. Client	46
5.1.2. Générateur d'unités	47
5.1.3 Validateur	АТ

5.1.4. Assimilateur	47
52. Diagramme de séquence	48
6. Conclusion	49
CHAPITRE 5 : Implémentation et expérimentation sur BOIN	C
1. Introduction	50
2. ParadisEO	50
2.2. Caractéristiques principales	51
3. Le benchmark utilisé	52
4. Implémentation des AGs avec paradisEO	53
4.1. Diagramme de classes	53
5. Expérimentations et résultats	55
5.1. Comparaison de l'AG hybridé avec l'AG non hybridé	55
5.2. Discussion	58
6. Parallélisation dans BOINC	60
6.1. Comparaison des deux algorithmes séquentiel et parallèle	63
7. Conclusion	65
Conclusion générale	66