République Algérienne Démocratique et Populaire Ministère de l'enseignement supérieur et de la recherche scientifique

Université des Sciences et Technologie Houari Boumediene Faculté d'Electronique et d'Informatique Département d'Informatique

Mémoire de fin d'études

Pour l'obtention du diplôme d'ingénieur d'Etat en informatique

Thème:

Modélisation et Simulation par multi-agent d'un système de paiement interbancaire (RTGS)

Réalisés par

Proposé par

- Ndayishimiye Joseph

Mme HEDJAZI Badiâa

- Mpwaji Frank Lawrence

DELLAL

Promotion: 2009/2010

Remerciements

Nous adressons en premier lieu nos vifs remerciements à Mme HEDJAZI, chercheur au centre de recherche sur l'information scientifique et technique (CERIST), pour nous avoir proposé un sujet de fin d'études riche et passionnant, et pour son encadrement et son suivi tout au long de l'exécution de notre PFE. Nous la remercions également pour son attention particulière, pour ses efforts et ses conseils dans la réalisation de notre PFE. Nos remerciements vont également à l'encontre du personnel du CERIST, pour nous avoir offert un terrain de stage pour concrétiser notre projet de fin d'études, et plus particulièrement à Mr MEZIANE (directeur du département systèmes d'information et systèmes multimédia du CERIST) pour son accueil, son orientation vers Mme HEDJAZI, et pour tous les services administratifs qu'ils nous a rendus tout au long de notre stage au CERIST.

Nos remerciements vont ensuite à Mr KECHID, enseignant à l'USTHB au département d'informatique, chargé de la commission de suivi de notre PFE, pour son attention et pour son suivi de notre PFE jusqu'à son terme.

Nous remercions également l'honorable jury pour les efforts consentis à l'évaluation de notre travail.

Nous remercions l'ensemble du corps enseignant de l'USTHB qui a contribué directement ou indirectement à l'accomplissement de notre graduation et à toute personne qui a contribué à l'accomplissement de notre PFE.

Enfin, nos remerciements vont à l'encontre de nos amis et proches pour leur soutien moral et leur encouragement durant notre cursus universitaire.

Dédicaces

Plus spécialement à ma très chère maman qui m'aime tant;		
A mon grand frère Serge et sa femme Bernite, mes sœurs Amélie, Euphrasie et Aggripine;		
A NAHIMANA Apolline;		
A tous mes amis et proches qui m'ont soutenu tout le long de mon séjour en Algérie ;		
Je dédie ce mémoire		

NDAYISHIMIYE Joseph

Dédicaces

Je voudrais dédier ce mémoire à mes chers parents Mr & Mrs Mpwaji, mes frères

Fr. Vincent Mpwaji, Deogratius Mpwaji, Fortunatus Mpwaji et mes sœurs Margreth Mpwaji

et Esther Mpwaji qui me donnent toujours le courage et tous mes amis qui m'ont soutenu

durant mon séjour en Algérie

Mpwaji Frank Lawrence

Résumé

Ce projet consiste à simuler un système de paiement interbancaire RTGS à travers un modèle multi-agent pour analyser l'évolution de la liquidité apportée par les banques au système. Dans le modèle, chaque banque choisit quotidiennement le montant de liquidité à engager dans le système sur base de minimisation des coûts (coûts de liquidité et de retard) en tenant compte de la liquidité apportée par les autres banques. Le raisonnement des agents banques est basé sur un jeu d'agrégat répété sur plusieurs journées de règlement où chaque banque joue contre le reste des autres banques. Pour atteindre l'équilibre, nous intégrons aux agents un module d'apprentissage et d'adaptation basé sur les systèmes de classeurs. Nous effectuons ensuite plusieurs simulations numériques pour suivre l'évolution de la liquidité globale du système dans deux scenarios : (i) fonctionnement normal du système sans aucun incident, (ii) fonctionnement du système avec un incident opérationnel qui empêche une banque d'effectuer ses opérations.

Sommaire

Introduction générale	12
1ère Partie : ETAT DE L'ART	14
Chapitre I : Les systèmes RTGS	15
1. Introduction	
2. Principales caractéristiques des RTGS	
2.1. Définition	
2.2. Procédure de paiement	
2.3. Capacité à limiter les risques du système de paiement	
2.4. Besoins de liquidité intra-journalière	
3. Principe de fonctionnement des RTGS	
4. Architectures des RTGS	17
4.1. Architecture en forme V	18
4.2. Architecture en forme Y	18
4.3. Architecture en forme L	19
4.4. Architecture en forme T	20
5. Gestion des files d'attente	
5.1. Algorithmes de gestion des files d'attente centrales	21
5.2. Optimisation des files d'attente	21
6. Approches de simulation des RTGS	
6.1. Simulation mathématique	22
6.2. Simulation multi-agent	
7. Conclusion	23
Chapitre II : Les systèmes multi-agents	24
1. Introduction	24
2. Agent	
2.1. Définitions d'agent	
2.2. Architecture générale et fonctionnement d'un agent	
2.3. Propriétés d'un agent	
2.4. Typologie d'agents	
2.4.1. Agent réactif	26
2.4.2. Agent cognitif	26
2.4.3. Agent hybride	28
2.5. Apprentissage des agents	
2.5.1. Types d'apprentissage	
2.5.1.1. Apprentissage symbolique	28
2.5.1.2. Apprentissage numérique	
2.5.2. Paradigmes d'apprentissage	
2.5.2.1. Apprentissage non supervisé	
2.5.2.2. Apprentissage supervisé	
2.5.2.3. Apprentissage par renforcement	29
2.5.3. Techniques d'apprentissage	
2.6. Applications des agents autonomes3. Systèmes multi-agents (SMA)	
3. Systemes mun-agents (SWA)	30

	1. Définition d'un SMA	
3.2	2. Interactions dans les SMA	30
	3.2.1. Communication	31
	3.2.1.1. Communication par partage d'information	31
	3.2.1.2. Communication par envoi de messages	
	3.2.1.3. Les langages de communication dans les SMA	32
	3.2.2. Coopération	35
	3.2.3. Négociation	
3.3	3. Organisation d'un SMA	
	4. Méthodologies de conception des SMA	
	3.4.1. Méthodologie AIEO	
	3.4.2. Méthodologie GAIA	37
	3.4.3. Méthodologie AGR	38
3.5	5. Plateformes de développement des SMA	
	3.5.1. La plateforme Madkit	39
	3.5.2. La plateforme Jade	
	3.5.3. La plateforme Zeus	
3.6	6. Utilité et domaines d'application des SMA	
	7. Simulation multi-agent	
	3.7.1. Caractéristiques et avantages de la simulation multi-agent	
	3.7.2. Avantages de la simulation multi-agent pour les RTGS	
	3.7.3. Quelques modèles multi-agents de simulation des RTGS	
4.	Conclusion	
Cnap	Introduction	
2.	Notion de classeur	
3.	Représentation des données dans un classeur	43
4.	Architecture générale d'un système de classeurs	
5.	Fonctionnement des algorithmes du système de classeurs	
	5.1.Algorithme du Bucket Brigade	45
	5.2.Création de nouvelles règles : covering	
	5.3. Algorithme génétique	46
6.	Les différents types de systèmes de classeurs	47
	6.1.LCS	
	6.2.ZCS	
	6.3.XCS	
	6.4.ACS	
7.	Conclusion	48
Char	itus IV I a théanis dag ionn érabrtionnistes	40
Cnap	oitre IV : La théorie des jeux évolutionnistes	
1.		
2.	Pourquoi des jeux évolutionnistes?	
3.	Représentation d'un jeu	
	3.1.Représentation en forme stratégique	
	3.2.Représentation en forme extensive	50
4	Définition d'un jeu en forme stratégique	50

٥.	Classification des jeux	
6.		
	6.1.Définition de l'équilibre	52
	6.2.Equilibre de Nash	
7.	Exemple de jeux classique : le dilemme du prisonnier	52
8.		
9.		
2 ^{ème} 1	parie : CONCEPTION	55
Chap	pitre V : Analyse et Conception du système	56
1.	Introduction	56
2.	Modèle de jeu de liquidité des banques dans les RTGS	56
	2.1.Les banques et la liquidité	
	2.2.Les paiements et les retards	57
	2.3.Procédure de paiement	58
	2.4.Les coûts et le profit	
	2.5.Représentation du jeu sous forme stratégique	
	2.6.Déroulement du jeu	59
3.		
	3.1. Spécification du système RTGS à simuler	
	3.2.Méthodologie de conception utilisée	
	3.3.Analyse des composants du système	
	3.3.1. Identification des agents	60
	3.3.1.1.Agent RTGS	60
	3.3.1.2. Agents Banques	
	3.3.2. Schéma général du système	
	3.3.3. Environnement du système	
	3.3.4. Interactions au sein du système	
	3.3.5. Organisation d'un SMA	64
4.		64
••	4.1.Agent RTGS	
	4.1.1. Architecture de l'agent RTGS	
	4.1.2. Classe d'agent RTGS	
	4.1.3. Description de l'agent RTGS	
	4.2.Agents Banques	
	4.2.1. Module d'apprentissage : Système de classeur	
	4.2.1.1.Premier système de classeur	67
	4.2.1.2.Deuxième système de classeur	
	4.2.2. Architecture de l'agent RTGS	
	4.2.3. Classe d'agent RTGS	
	4.2.4. Description de l'agent RTGS	
	4.2.5. Intégration du jeu de liquidité dans l'agent banque	
	4.3. Diagrammes d'activités des agents	77
	4.4. Conception de la base de données	
	4.4.1. Identifications des classes de la base de données	
	4.4.2. Description des classes	
5	Conclusion	

3 ^{ème} partie : REALISATION	77
Chapitre VI : Réalisation	78
1. Introduction	78
2. Outils et environnement de développement	78
2.1.Plateforme multi-agent (JADE)	78
2.2.Langage de programmation (Java)	78
2.3.SGBD	79
2.4. Module d'apprentissage (ART)	79
3. Architecture logicielle du prototype	80
4. Algorithmes d'exécution des agents	81
4.1. Algorithme d'exécution de l'agent RTGS	81
4.2. Algorithme d'exécution de l'agent banque	81
5. Interfaces Homme-Machine	82
6. Conclusion	87
Conclusion générale	88
Références bibliographiques	90
Annexe A: La plateforme Jade	
Annexe B: La librairie ART	103
Annexe C : Synthèse d'AUML	104