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Preface

It was a very different, unprecedented, and weird start of the semester, and I did
not know what to do. This semester, I was supposed to offer a new senior-level
undergraduate class on Advanced Intelligence to jointly teach students at the Depart-
ment of Bio/Brain Engineering and the Department of Mathematical Sciences. I
had initially planned a standard method for teaching machine learning, the contents
of which are practical, experience-based lectures with a lot of interaction with the
students through many mini-projects and term projects. Unfortunately, the global
pandemic of COVID-19 has completely changed the world and such interactive
classes are no longer an option most of the time.

So, I thought about the best way to give online lectures to my students. I
wanted my class to be different from other popular online machine learning courses
but still provide up-to-date information about modern deep learning. However,
not many options were available. Most existing textbooks are already outdated or
very implementation oriented without touching the basics. One option would be to
prepare presentation slides by adding all the up-to-date knowledge that I wanted to
teach. However, for undergraduate-level courses, the presentation files are usually
not enough for students to follow the class, and we need a textbook that students
can read independently to understand the class. For this reason, I decided to write
a reading material first and then create presentation files based on it, so that the
students can learn independently before and after the online lectures. This was the
start of my semester-long book project on Geometry of Deep Learning.

In fact, it has been my firm belief that a deep neural network is not a magic black
box, but rather a source of endless inspiration for new mathematical discoveries.
Also, I believed in the famous quote by Isaac Newton, “Standing on the shoulders
of giants,” and looking for a mathematical interpretation of deep learning. For me
as a medical imaging researcher, this topic was critical not only from a theoretical
point of view but also for clinical decision-making, because we do not want to create
false features that can be recognized as diseases.

In 2017, on a street in Lisbon, I had Eureka! moment in understanding hidden
framelet structure in encoder-decoder neural networks. The resulting interpretation
of the deep convolutional framelets, published in the SIAM Journal of Imaging
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viii Preface

Science, has had a significant impact on the applied math community and has
been one of the most downloaded papers since its publication. However, the role
of the rectified linear unit (ReLU) was not clear in this work, and one of the
reviewers in a medical imaging journal consistently asked me to explain the role
of the ReLU in deep neural networks. At first, this looked like a question that went
beyond the scope of the medical application paper, but I am grateful to the reviewer,
as during the agony of preparing the answers to the question, I realized that the
ReLU determines the input space partitioning, which is automatically adapted to
the input space manifold. In fact, this finding led to a 2019 ICML paper, in which
we revealed the combinatorial representation of framelets, which clearly shows the
crucial connection with the classic compressed sensing (CS) approaches.

Looking back, I was pretty brave to start this book project, as these are just two
pieces of my geometric understanding of deep learning. However, as I was preparing
the reading material for each subject of deep learning, I found that there are indeed
many exciting geometric insights that have not been fully discussed.

For example, when I wrote the chapter on backpropagation, I recognized the
importance of the denominator layout convention in the matrix calculus, which
led to the beautiful geometry of the backpropagation. Before writing this book,
the normalization and attention mechanisms looked very heuristic to me, with
no evidence of a systematic understanding that is even more confusing due to
their similarities. For example, AdalN, Transformer, and BERT were like dark
recipes that researchers have developed with their own secret sauces. However,
an in-depth study for the preparation of the reading material has revealed a very
nice mathematical structure behind their intuition, which shows a close connection
between them and their relationship to optimal transport theory.

Writing a chapter on the geometry of deep neural networks was another joy
that broadened my insight. During my lecture, one of my students pointed out that
some partitions can lead to a low-rank mapping. In retrospect, this was already in
the equation, but it was not until my students challenged me that I recognized the
beautiful geometry of the partition, which fits perfectly with fascinating empirical
observations of the deep neural network.

The last chapter, on generative models and unsupervised learning, is something
of which I am very proud. In contrast to the conventional explanation of the gener-
ative adversarial network (GAN), variational auto-encoder (VAE), and normalizing
flows with probabilistic tools, my main focus was to derive them with geometric
tools. In fact, this effort was quite rewarding, and this chapter clearly unified various
forms of generative model as statistical distance minimization and optimal transport
problems.

In fact, the focus of this book is to give students a geometric insight that can
help them understand deep learning in a unified framework, and I believe that this is
one of the first deep learning books written from such a perspective. As this book is
based on the materials that I have prepared for my senior-level undergraduate class, I
believe that this book can be used for one-semester-long senior-level undergraduate
and graduate-level classes. In addition, my class was a code-shared course for
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both bioengineering and math students, so that much of the content of the work
is interdisciplinary, which tries to appeal to students in both disciplines.

I am very grateful to my TAs and students of the 2020 spring class of BiS400C
and MAS480. I would especially like to thank my great team of TAs: Sangjoon
Park, Yujin Oh, Chanyong Jung, Byeongsu Sim, Hyungjin Chung, and Gyutaek
Oh. Sangjoon, in particular, has done a tremendous job as Head TA and provided
organized feedback on the typographical errors and mistakes of this book. I would
also like to thank my wonderful team at the Bio Imaging, Signal Processing
and Learning laboratory (BISPL) at KAIST, who have produced ground-breaking
research works that have inspired me.

Many thanks to my awesome son and future scientist, Andy Sangwoo, and my
sweet daughter and future writer, Ella Jiwoo, for their love and support. You are my
endless source of energy and inspiration, and I am so proud of you. Last, but not the
least, I would like to thank my beloved wife, Seungjoo (Joo), for her endless love
and constant support ever since we met. I owe you everything and you made me a
good man. With my warmest thanks,

Daejeon, Korea Jong Chul Ye
February, 2021
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