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Preface

About This Book

With the recent rise in popularity of Bayesian statistics, many books on this subject
have been published. However, many of these books either only contain basic infor-
mation, or contain too complicated formulas that are not easy to extend in practice.
This book is, therefore, a departure from those books, and is intended to be a very
practical book on Bayesian statistical modeling with real-world data analysis.

This book is about Stan, a software that conducts statistical modeling in the frame-
work of Bayesian statistics. We also introduce how to use its R package CmdStanR
and Python package CmdStanPy.

Statistical modeling is a process of fitting mathematical models with probabilistic
distributions to the observed data, in order to understand phenomena and to further
make predictions. In earlier days, such a method was not considered to be a practical
method for the analysis of the real-world data, due to several reasons. For instance,
it is not easy to collect a large amount of data and the computational time of the
method was very long. In addition, fitting a complex model needs high mathematical
skills, because the analytical solution is difficult and implementing its solution is
even harder.

Yet nowadays, these are not the problems anymore. Today we can obtain a large
amount of data relatively easily, and computers have become powerful and efficient
compared to the earlier days. Also luckily, several programming languages that are
specifically designed for statistical modeling have been developed. Therefore, statis-
tical modeling has become one of the most efficient approaches for data analysis in
the recent studies.

In this book, we use a new programing language, Stan, to conduct statistical
modeling. Stan incorporates an excellent algorithm, and importantly, it is under active
development by an awesome community. Its R and Python packages (CmdStanR
and CmdStanPy) are released in parallel, which provide an easy starting point for
the beginners. In Stan, many models can be written in about 30 lines of code. This
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includes not only the basic models such as multivariate regression and logistic regres-
sion, but also more advanced modeling such as hierarchical models, state-space
models, Gaussian processes, and many others. Moreover, it enables the problem-
specific model extensions based on the problem that every user is trying to solve for.
We believe that the skillsets and the way of thinking about the real-world problem
using Stan in this book will be helpful for every reader, even if the syntax of the Stan
changes in the future, or one day another statistical modeling framework comes out
and replaces Stan.

Chapter Structure

This book is structured in a way so that by reading from the beginning to the end,
readers can obtain a systematical knowledge and skillsets for statistical modeling
using Stan. The chapter structure in this book is organized as follows (see Fig. 1).

Roughly, the chapters can be divided into four large sections. Chapters 1 and 2
are the introduction, and we mainly focus on the theoretical background on statis-
tical modeling and Bayesian inference. Chapters 3-5 are the guide of how to use
Stan, specifically for the beginners. We introduce how to use Stan itself, as well as
CmdStanR, and CmdStanPy through the example of simple regression analysis such
as multiple linear regression and logistic regression. Chapters 6—10 are for more
advanced users, and the important components and techniques to master statistical
modeling are introduced. Chapters 6, 8, and 10 are the main chapters, which increase
your statistical modeling approach repertoire. Chapters 7 and 9 introduce approaches
for model improvement. Chapters 11-14 focus on advanced topics, which are applied
and discussed quite widely when conducting the real data analysis.

We listed a summary of contents in each chapter: In Chap. 1, we give a brief intro-
duction to statistical modeling and its features, as well as the recommended statistical
modeling workflow. In Chap. 2, we concisely summarize the terminologies used in
Bayesian inference and MCMC. These terminologies will be necessary to under-
stand the later chapters. In Chap. 3, we introduce how to install Stan and describe its
basic syntax. In Chap. 4, we show how to use Stan with its interface CmdStanR or
CmdStanPy through an example of simple linear regression. Specifically, we discuss
how to generate an MCMC sample, and obtain Bayesian confidence intervals and
Bayesian prediction intervals from the MCMC sample. We also show how to explain
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Fig. 1 A flow diagram showing the connections between chapters
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the obtained inference results. In Chap. 5, we follow the statistical modeling work-
flow introduced in Chap. 1. The examples of multiple linear regression, logistic
regression, and Poisson regression are also given. We also show examples of how to
use plots to check the used models. In Chap. 6, we deviate slightly from the Stan itself
and introduce basic probabilistic distributions. We mainly focus on the distributions
that are used frequently in analytical practice. In Chap. 7, we summarize some poten-
tial issues and troubles when applying regression models to realistic problems. This
chapter also includes the introductions on non-linear models, censored data, and data
with outliers. In Chap. 8, we introduce hierarchical models (multilevel models). This
type of model is used to account for group differences and individual differences.
It will be one of the most widely used model types in the future. In Chap. 9, we
introduce the troubleshooting approach when the MCMC does not converge, with
the focus on setting the weakly informative priors. In Chap. 10, we introduce how
to address discrete parameters. The current version of Stan has the limitation that is
not able to use the discrete parameters, and we introduce how to solve such issues.
In Chap. 11, we use state-space models for time series data. In Chap. 12, we use
Markov Random Field models and Gaussian Processes for spatial data. In Chap. 13,
we introduce how to efficiently use the MCMC sample from a posterior distribution
(or a predictive distribution). In Chap. 14, we discuss some advanced topics, specif-
ically we choose some examples from survival time analysis, matrix factorization,
and model selection using information criteria.

Prerequired Background Knowledge

We do not require the readers to have the previous experience on statistical modeling.
However, since building models and checking the models are time-consuming and
labor-intensive processes, we hope the readers have the mindset and enthusiasm to
enjoy such processes.

To conduct statistical modeling, it requires a wide range of knowledge and skills
such as the statistics knowledge (especially probability distributions), skill to imagine
the mechanisms of the observed phenomenon and to express them using mathematical
formulas as well as programming languages. One of the aims of this book is to extend
and improve these types of skillsets. That being said, in this book, we assume that the
readers have the following basic knowledge and skillsets already as the requirement.

e The fundamental knowledge of probability and statistics: probability, probability
distributions, probability density functions, conditional probability, joint proba-
bility, marginal probability, correlation coefficients. The knowledge of statistical
tests is not required. The next section introduces each of these terminologies
briefly, but it would also be helpful to look up some web resources including
Wikipedia for those who are less familiar.

e Programming skills: You should be familiar with either R or Python. Specifically,
we require the readers to be able to conduct fundamental data processing and data
visualizations.
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The Terminologies and Symbols Used in This Book

Sum and Products
% represents the summation:

K

Zak =a+a+ ...+ ag,
k=1

and [T represents the product:

K
H(lk =da) Xay X ... Xdg.
k=1

Probability Distribution

Probability distribution is the expression of how likely a random variable takes each
of the possible values. It also can be simply called as distributions. The probability
distribution of random variable a is written as p(a).

Probability Mass Function (PMF)
When the random variable is a discrete variable, the probability distribution is called
a probability mass function.

Probability Density Function (PDF)

When the random variable is a continuous variable, the probability distribution is
called a probability density function. It is also called a density. Note that if the
probability density function is denoted as p(x), the value at p(x) (for instance,
p(x = 0)) is not a probability. Rather, the integral of p(x) is a probability. For
instance, the probability that 0 < x < 0.2 can be expressed as follows:

0.2

/p(x)dx

0

Joint Distribution

When there are multiple random variables, a joint distribution expresses the prob-
ability that how likely each of these random variables takes the possible values for
them. It is a type of probability distribution. When there are two random variables a
and b, we write their joint distribution as p(a, b), and when we have total of K random
variables 0y, 6,, . .., 6k, we write their joint distribution as p (6, 0,, ..., k).
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Marginalization and Marginal Distribution

Marginalization is the elimination of variables by summing up or integrating a
joint distribution with respect to random variables in the joint distribution over their
possible values. The probability distribution obtained by marginalization is called a
marginal distribution. For instance, by summing up the joint probability with respect
to a discrete random variable a, we can obtain the marginal distribution p(b) from
pla, b):

pb) =) pla,b)

Similarly, when a is a continuous random variable, by integrating the joint distri-
bution with respect to a, we can obtain the marginal distribution p(b) from p(a, b):

mm=/pmmw

Figure 2 shows the relationship between joint distribution and marginal distribution.
The example where both a and b are discrete variables is shown in the left table
of Fig. 2. The table shows the distribution of the species and sexes of animals in
a pet store. The region surrounded by the solid gray line is the joint distribution
p(Animal, Sex). The region surrounded by the dotted gray line on the right side is
the marginal distribution p(Sex), which is obtained by summing up the probability
with respect to Animal. Similarly, the region surrounded by the dashed gray line on
the bottom side is the marginal probability p(Animal), which is obtained by summing
up the probability with respect to Sex. It is called a marginal distribution because we
commonly show the summed probability on the margins of a table as shown here.
The right plot on Fig. 2 shows when both a and b are continuous variables. The
contour lines represent the joint distribution p(a, b). The density plot on the right
side of the plot is p(b) which is obtained by integrating p(a, b) with respect to a.
The density distribution on the top is p(a), which is obtained by integrating p(a, b)
with respect to b.

Conditional Probability Distribution

We consider a joint distribution p(a, b). The distribution of the random variable a,
when a value b is given to the random variable b, is called the conditional probability
distribution, and is written as p(a|by). The following equation holds true:

p(a, bo)
p(bo)

plalbo) =

Figure 3 shows the conditional probability distribution using the data from Fig. 2. The
region surrounded by the solid gray line on the left table on Fig. 3 is the conditional
probability distribution p(a|by) when the sex by = Female is given. The density



b~&| Cats | Dogs | Birds | Total
Male 0.19 | 0.23 | 0.12 | 0.54
Female | 0.22 | 0.16 | 0.08 [ 0.46 :
Total ) 041 | 039 | 020 § 100

Fig. 2 Examples of joint distribution and marginal distribution

p | Cats | Dogs | Birds | Total

Male

F l 0.22 | 0.16 | 0.08 | 0.46
oM 0.46 | 0.46 | 0.46 | 0.46
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Fig. 3 Examples of conditional probability distribution

function on the top right of Fig. 3 is the conditional probability distribution p(a|bg)
when by = 0 is given.

In addition, when the location and the shape of the probability distribution of a
random variable y is determined by parameter 6, we write it as p(y|6).

Notation of y ~ p(y)
The expression of y ~ p(y) represents that the values of a random variable y is
generated probabilistically from a probability distribution p(y). In other words, a
random variable y follows a probability distribution p(y). For instance, if we write
a Poisson distribution with parameter A as Poisson(y|A), then y ~ Poisson(y|})
represents that the values of y is probabilistically generated from Poisson(y|}X), or y
follows Poisson(y|A). We can also write it by omitting y, like y ~ Poisson(A).
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Independence

When we say that two random variables a and b are mutually independent, we mean
that this equation holds true: p(a, b) = p(a)p(b). Further, from the definition of
conditional probability distribution, this is equivalent to p(a|b) = p(a).

Normalization

In this book, we use the term normalization to refer multiplying a constant to a
function (or dividing by a constant), for the function to satisfy the condition of the
probability density function. The constant that is used for normalization is called the
normalization constant.

Partial Derivative
Consider a function of two variables f (6], 6,). We consider the derivative by fixing
6, as a constant and changing 6,

lim f 61+ A6y, 6,) — f(01,6:)
AB;—0 AOl

and this is called partial derivative of f (0, 8;) with respect to 6;. The same would
apply for multivariate function f (6y, 65, ..., 6x), and when taking its derivative, we
only need to consider all variables as constants, except for ;.

Uppercase Letters
In this book, all the uppercase letters such as ¥ and Age refer to the given data,
unless otherwise specified.

Vectors and Matrices

In this book, vectors are denoted with arrows on top of each letter (?), whereas
matrices are denoted with uppercase letters with bold font (X). When it is only said
to be a vector, its default is a column vector. Sometimes we use transpose sign 7 with
a row vector to express a column vector. The main reason of doing this is simply to
save the paper space.

= T
X= x| =(xxx3)

Subscripts and “[]”

There are two types of subscripts. One is to represent the contents of the variable like
oy (which represents o, the standard deviation, of y). The other type is to represent
the elements in a vector or a matrix. For instance, when we want to specify the
k-th element in a vector ?, we write it as 0. In the latter case, sometimes we use
“[1” to represent 6 as of O[k]. Similarly, we write 6[n, k] to represent 6, ; as well.

Additinoally, W?)] represents that the third element of Y is a vector.
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Others

In the field of statistical modeling, terms such as mixed models, mixed effect models,
fixed effects, and random effects are frequently used. This book also deals with the
models that are related to these terms but does not use these. This is because we
consider it important to understand model formulas rather than the terms them-
selves. In addition, since multilevel models and hierarchical models have the same
mathematical formula, they are both called hierarchical models in this book.

The Source Code Used in the Book

All the source code and data in each chapter, including the visualization part, are
freely available on this book’s GitHub repository: https://github.com/MatsuuraKent
aro/Bayesian_Statistical_Modeling_with_Stan_R_and_Python.

Also, in some of the chapters, we added some practice examples where the readers
can code by themselves and deepen the understanding. The answers to those practical
examples are also released on the same GitHub repository. Please use it as areference.
Lastly, in this book, we kept the following formats consistent:

e The set of equations to represent a model (Model Formula X.Y)
e Stan code (modelX-Y.stan)
e R and Python code (run-modelX-Y.R, run-modelX-Y.py)

The computing environment under which this book was written was Windows 11
(64bit), R 4.1.3, Stan 2.29.2, CmdStanR 0.5.0, CmdStanPy 1.0.1.

Tokyo, Japan Kentaro Matsuura
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