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Preface

This textbook is designed for beginning graduate and advanced undergraduate
students in statistics, biostatistics, and bioinformatics, but it may also be useful to
a broader audience. Particular emphasis is put on
e Step-by-step introductions to the mathematical tools
and principles
e Exercises that complement the main text, many of them
with detailed solutions
e Computer labs that convey practical insights and expe-
rience
e Suggestions for further reading

This approach should give the reader a smooth start in the field.

I am grateful to Dr. Marco Rossini for the inspiring discussions about drafts of
this book and about statistics in general. I also thank Yannick Diiren, Shih-Ting
Huang, Dr. Tobias Kaufmann, Janosch Kellermann, Mike Laszkiewicz, Mahsa
Taheri, and Dr. Fang Xie for their valuable suggestions and corrections.

Johannes Lederer
Bochum, Germany
January 2020
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Exercises, Labs, and Literature

In addition to the main text, the book contains exercises, labs, and literature notes.
The diamond ratings ¢/ ¢, 0O/ ¢4, OO0 /4 ¢ # next to an exercise number indicate
the difficulty of the problem and if solutions are provided: the more diamonds, the
harder or longer the solution of an exercise, and filled diamonds mean that there are
solutions at the back of the book (however, I still recommend strongly to attempt
all exercises seriously without looking up the solutions first).

The labs are written in R. We propose the use of the Rstudio IDE, which
is available for free on the Web. Make sure to have downloaded the packages
that are included with the 1ibrary () command; this can be done conveniently
within Rstudio via the Packages panel. To access the manuals of the various
functions, you can use the Help panel. 8 Fig. 1 shows how the lab exercises look
like (top panel) and how to solve them (bottom panel). The labs are interpreted with
R version 3.5.2; your outputs might slightly differ if you use a different version of R
(especially the set . seed () function changed with version 3.6.0).

Further notes and references are indicated by numbered superscripts (such as
“[...] copy-number variation (CNV).2”) in the main text and stated in the Notes
and References sections toward the end of each chapter.

Finally, we denote sections that can be skipped at first reading with an asterisk
(such as “2.4 Holder Inequality*”).



VIl Exercises, Labs, and Literature

B Fig. 1 Example R lab (top
panel) and corresponding
solution (bottom panel). The
reader is supposed to replace the
keyword REPLACE by the correct
code

sine

Plot the sine () function from 0 to 27.

t <- seq(0, 2 * pi, 0.01)

y <- REPLACE

plot(t, y, type="1", las=1, xlab="angle", ylab="sine")
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Plot the sine() function from 0 to 27.
t <- seq(0, 2 * pi, 0.01)
y <- sin(t)
plot(t, y, type="1", las=1, xlab="angle", ylab="sine")
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Notation

Here, we introduce some notation that we will use throughout the book.

Basic Quantities Lowercase letters ¢ denote numbers; calligraphic lowercase let-
ters £ real-valued functions; boldface lowercase letters a (column) vectors; boldface,
calligraphic lowercase letters £ vector-valued functions; capital letters 4 matrices;
calligraphic capital letters of sets; Greek letters A real-valued parameters; boldface
Greek letters A vector-valued parameters; capital Greek letters A matrix-valued
parameters; and additional hats ’):, 3:, A parameter estimates.

Basic Functions The logarithm is taken with respect to the basis e, that is, loge = 1.
The smallest integer larger or equal to a given ¢ € R is denoted by [a]. The support
of a vector a € RP is denoted by suppla] := {j € {1, ..., p} : a; # 0}. Minima over
the empty set are set to infinity: mingc o £[a] := oo for every function £. The signum
functionsign : R — Risdefined via sign[a] := 1{a > 0} —1{a < 0}. The cardinality
of a set o, that is, the number of elements in , is denoted by |</| € {0, 1, ..., co}.
The sum of two sets &, % that are defined over the same vector space is & + B :=
{a+b:ac o, be B}, and aRB .= {ab : b € &B}.

Norms and the Standard Inner Product A function ||-| : R? — R is called a norm
on R” if it 1. satisfies the triangle inequality (|a + b| < ||a| + |b| for all a, b € R?),
2. 1s absolutely homogenenous (|ab| = |a||b| for alla € R, b € RP), and 3. is positive
definite (|a| = 0 if and only if a = 0)).

Assumptions 1-3 imply that norms are non-negative: 0 = [0,] = |a—al| < |a|+
|—al = |la| + |—1||a| = 2|al, that is, |a]| > 0 for all @ € R?; Assumption 2 implies
that norms are symmetric: |—a| = |(—1) - a| = |—1||a] = |a|; Assumption 2
also implies that norms are scalable: |b/|b]l| = [b]/16] = 1 for all b # 0,. The

£4-functions on R?, where ¢ € [0, ool and p € {1, 2, ...}, are defined for g € (0, 00)
as

by R — [0,00);
1/q

p
av lal, = | D lgl?| .
j=1

forg =0 as

b R — {0,1,...};

av> laly = |{je{l.....p} : q; #0}

and for ¢ = oo as

loo = R? — [0, 00);

ar |al, = max |aj|.
Jetl,...p}

.....



X Notation

The ¢,-functions are norms if and only if ¢ > 1 (see 1. in Exercise 2.2); accordingly,
we often refer to those functions as /;-norms. The ¢;-norm is also called Euclidean
norm; the {oo-norm is also called sup-norm or max-norm.

The (standard) inner product on R? is the function (-, -) : R? x R? — R defined
through (a, b) :=a'h ="/, ajb; for a, b € R”. The inner product is 1. symmetric
({a, b) = (b, a) for all a, b € RP), 2. linear ({ab, ¢) = a(b, ¢) and (a+ b, ¢) =
(a, ¢) + (b, c¢) forall a € R, a, b, ¢ € R?), and 3. positive definite ({a, a) > 0 for all
a € R? and (a, a) = 0if and only if @ = 0,). Two vectors a, b € R” are orthogonal
if (a, b) = 0.

Intervals and the Extended Real Line We denote by [«, b] the interval betweena € R
and b € R that contains the endpoints (a, b € [a, b]), by [a, b) and (a, b] the intervals
between a and b that contain the left end right endpoint, respectively (a € [a, b),
b ¢ la,b),a ¢ (a,bl, b € (a,b]), and by (a, b) the interval between a and b that
does not contain the endpoints (a, b ¢ (a, b)).

The real line extended by {—o0, +00} is denoted by [—o0, 00] := RU{—00, +00}.
Similarly, [0, co] := [0, co) U {00}, (0, co] := (0, co) U {oo}, and so forth. We use
the conventions 0 - (+00) := (+00) - 0 := 0, a/(+o0) :=0fora € R, a - (£o0) :=
(£o0)-a := oo fora € (0, 00], and a- (00) := (£00)-a := Foo fora € [—o0, 0),
which are all continuous extentions of the rules on R, and the convention 0/0 := 0,
which renders our expressions most concise (note that 0/0 cannot be obtained by
extending the rules on R continuously: if it were, then 0/0 = lim,_o(a/a) = 1
and at the same time 0/0 = (2-0)/0 = 2 - (0/0) = 2, which is a contradiction).
The ordering of the values in [—o0, 00] is as expected: for example, a < oo for all
a e [—o0, 00).

Index Sets and Matrices The complement of a set &/ with respect to an ambient
set & is denoted by S = B \ &. For example, the complement of {1, 2} with
respect to {1, ..., p}, where p € {3,4,...},1s {3, ..., p}. Typically, it is clear what
the ambient set is, so that there is no further mention of it.

Consider a vector ¢ € R’ and a corresponding index set &/ {1, ..., [} with size
a = |d|. We denote ¢y € R? as the vector that consists of the coordinates of ¢
with indexes in &. For example, for ¢ = (3,4,5)" and & = (I, 3}, it holds that
ey = (3,5) 7. The special case & = @ is taken into account by setting ¢z := 0.

Consider a matrix C € R’ and corresponding index sets &/ C {1, ..., [} and
B C {1,...,m} with sizes a := || and b := |9B|, respectively. We denote Cy €
R*@ a5 the matrix that consists of the columns of C with indexes in o/, and we
denote Cgy € R'™™ as the matrix that consists of the rows and columns of C with
indexes in & and &, respectively. For example,

C = <123),d= (2,3}, B={l}= Cy = @2

456 ),CW=(23).
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However, we typically assume that the coordinates of the vectors/the rows and
columns of the matrices are shuffled such that &/ = {1,...,a}and B = {1, ..., b}.
This allows us to write, for example, ¢ = (c;,, c;c)T and

C - (C%y CQMG> .
Cogt oy Coatoft

We finally use the convention C, := (Cy) "
A brief review of matrix algebra can be found in » Sect. B.2.

Miscellaneous The expression z ~ Ap[p, X1, p € R’, ¥ € RP*7, states that x
is a random vector that follows a Gauss distribution in p dimensions with mean
vector pu and covariance matrix ¥. In p = 1 dimensions, we write z ~ Mpu, o2,
where 1 € R is the mean and 0% € (0, o) the variance.

Given a positive integer p € {1,2, ...}, we define 0, := (0,...,0)" € RZ.
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