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Preface to the second edition

Differential equations (DEs) are the foundation on which many mathematical models
for real-life applications are built. These equations can seldom be solved in ‘closed’
form: in fact, the exact solution can rarely be characterized through explicit, and easily
computable, mathematical formulae. Almost invariably one has to resort to appropriate
numerical methods, whose scope is the approximation (or discretization) of the exact
differential model and, hence, of the exact solution.

This is the second edition of a book that first appeared in 2009. It presents in a
comprehensive and self-contained way some of the most successful numerical methods
for handling DEs, for their analysis and their application to classes of problems that
typically show up in the applications.

Although we mostly deal with partial differential equations (PDEs), both for steady
problems (in multiple space dimensions) and time-dependent problems (with one or
several space variables), part of the material is specifically devoted to ordinary dif-
ferential equations (ODEs) for one-dimensional boundary-value problems, especially
when the discussion is interesting in itself or relevant to the PDE case.

The primary concern is on the finite-element (FE) method, which is the most popu-
lar discretization technique for engineering design and analysis. We also address other
techniques, albeit to a lesser extent, such as finite differences (FD), finite volumes (FV),
and spectral methods, including further ad-hoc methods for specific types of problems.
The comparative assessment of the performance of different methods is discussed, es-
pecially when it sheds light on their mutual interplay.

We also introduce and analyze numerical strategies aimed at reducing the com-
putational complexity of differential problems: these include operator-splitting and
fractional-step methods for time discretization, preconditioning, techniques for grid
adaptivity, domain decomposition (DD) methods for parallel computing, and reduced-
basis (RB) methods for solving parametrized PDEs efficiently.

Besides the classical elliptic, parabolic and hyperbolic linear equations, we treat
more involved model problems that arise in a host of applicative fields: linear and
nonlinear conservation laws, advection-diffusion equations with dominating advec-
tion, Navier-Stokes equations, saddle-point problems and optimal-control problems.
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Here is the contents’ summary of the various chapters.

Chapter 1 briefly surveys PDEs and their classification, while Chapter 2 introduces
the main notions and theoretical results of functional analysis that are extensively used
throughout the book.

In Chapter 3 we illustrate boundary-value problems for elliptic equations (in one
and several dimensions), present their weak or variational formulation, treat bound-
ary conditions and analyze well-posedness. Several examples of physical interest are
introduced.

The book’s first cornerstone is Chapter 4, where we formulate Galerkin’s method
for the numerical discretization of elliptic boundary-value problems and analyze it in
an abstract functional setting. We then introduce the Galerkin FE method, first in one
dimension, for the reader’s convenience, and then in several dimensions. We construct
FE spaces and FE interpolation operators, prove stability and convergence results and
derive several kinds of error estimates. Eventually, we present grid-adaptive proce-
dures based on either a priori or a posteriori error estimates.

The numerical approximation of parabolic problems is explained in Chapter 5:
we begin with semi-discrete (continuous in time) Galerkin approximations, and then
consider fully-discrete approximations based on FD schemes for time discretization.
For both approaches stability and convergence are proven.

Chapters 6, 7 and 8 are devoted to the algorithmic features and the practical im-
plementation of FE methods. More specifically, Chapter 6 illustrates the main tech-
niques for grid generation, Chapter 7 surveys the basic algorithms for the solution of
ill-conditioned linear algebraic systems that arise from the approximation of PDEs, and
Chapter 8 presents the main operational phases of a FE code, together with a complete
working example.

The basic principles underlying finite-volume methods for the approximation of
diffusion-transport-reaction equations are discussed in Chapter 9. FV methods are com-
monly used in computational fluid dynamics owing to their intrinsic, built-in conser-
vation properties.

Chapter 10 addresses the multi-faceted aspects of spectral methods (Galerkin, col-
location, and the spectral-element method), analyzing thoroughly the reasons for their
superior accuracy properties.

Galerkin discretization techniques relying on discontinuous polynomial subspaces
are the subject of Chapter 11. We present, more specifically, the discontinuous Galerkin
(DG) method and the mortar method, together with their use in the context of finite el-
ements or spectral elements.

Chapter 12 focuses on singularly perturbed elliptic boundary-value problems, in
particular diffusion-transport equations and diffusion-reaction equations, with small
diffusion. The exact solutions to this type of problems can exhibit steep gradients in
tiny subregions of the computational domains, the so-called internal or boundary lay-
ers. A great deal of attention is paid to stabilization techniques meant to prevent the
on-rise of oscillatory numerical solutions. Upwinding techniques are discussed for FD
approximations, and their analogy with FE with artificial diffusion is analyzed. We
introduce and discuss other stabilization approaches in the FE context, as well, which



Preface IX

lead to the sub-grid generalized Galerkin methods, the Petrov-Galerkin methods and
Galerkin’s Least-Squares method.

The ensuing three chapters form a thematic unit focusing on the approximation of
first-order hyperbolic equations. Chapter 13 addresses classical FD methods. Stability
is investigated using both the energy method and the Von Neumann analysis. Using
the latter we also analyze the properties of dissipation and dispersion featured by a
numerical scheme. Chapter 14 is devoted to spatial approximation by FE methods,
including the DG methods and spectral methods. Special emphasis is put on charac-
teristic compatibility conditions for the boundary treatment of hyperbolic systems. A
very quick overview of the numerical approximation of nonlinear conservation laws is
found in Chapter 15. Due to the relevance of this particular topic the interested reader
is advised to consult the specific monographs mentioned in the references.

In Chapter 16 we discuss the Navier-Stokes equations for incompressible flows,
plus their numerical approximation by FE, FV and spectral methods. A general sta-
bility and convergence theory is developed for spatial approximation of saddle-point
problems, which comprises strategies for stabilization. Next we propose and analyze
a number of time-discretization approaches, among which finite differences, charac-
teristic methods, fractional-step methods and algebraic factorization techniques. Spe-
cial attention is devoted to the numerical treatment of interfaces in the case of multi-
phase flows.

Chapter 17 discusses the issue of optimal control for elliptic PDEs. The problem
is first formulated at the continuous level, where conditions of optimality are obtained
using two different methods. Then we address the interplay between optimization and
numerical approximation. We present several examples, some of them elementary in
character, others involving physical processes of applicative relevance.

Chapter 18 regards domain-decomposition methods. These techniques are specifi-
cally devised for parallel computing and for the treatment of multiphysics’ PDE prob-
lems. The families of Schwarz methods (with overlapping subdomains) and Schur
methods (with disjoint subdomains) are illustrated, and their convergence properties
of optimality (grid invariance) and scalability (subdomain-size invariance) studied.
Several examples of domain-decomposition preconditioners are provided and tested
numerically.

Finally, in Chapter 19 we introduce the reduced-basis (RB) method for the effi-
cient solution of PDEs. RB methods allow for the rapid and reliable evaluation of
input/output relationships in which the output is expressed as a functional of a field
variable that is the solution of a parametrized PDE. Parametrized PDEs model several
processes relevant in applications such as steady and unsteady transfer of heat or mass,
acoustics, solid and fluid mechanics, to mention a few. The input-parameter vector var-
iously characterizes the geometric configuration of the domain, physical properties,
boundary conditions or source terms. The combination with an efficient a posteriori
error estimate, and the splitting between offline and online calculations, are key factors
for RB methods to be computationally successful.

Many important topics that would have deserved a proper treatment were touched
only partially (in some cases completely ignored). This depends on the desire to offer
a reasonably-sized textbook on one side, and our own experience on the other. The
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list of notable omissions includes, for instance, the approximation of equations for the
structural analysis and the propagation of electromagnetic waves. Detailed studies can
be found in the references’ specialized literature.

This text is intended primarily for graduate students in Mathematics, Engineer-
ing, Physics and Computer Science and, more generally, for computational scientists.
Each chapter is meant to provide a coherent teaching unit on a specific subject. The first
eight chapters, in particular, should be regarded as a comprehensive and self-contained
treatise on finite elements for elliptic and parabolic PDEs. Chapters 9-16 represent an
advanced course on numerical methods for PDEs, while the last three chapters con-
tain more subtle and sophisticated topics for the numerical solution of complex PDE
problems.

This work has been used as a textbook for graduate-level courses at the Politec-
nico di Milano and the Ecole Polytechnique Fédérale de Lausanne. We would like
to thank the many people — students, colleagues and readers — who contributed, at
various stages and in many different ways, to its preparation and to the improve-
ment of early drafts. A (far from complete) list includes Paola Antonietti, Luca
Dedé, Marco Discacciati, Luca Formaggia, Loredana Gaudio, Paola Gervasio, An-
drea Manzoni, Stefano Micheletti, Nicola Parolini, Anthony T. Patera, Luca Pavarino,
Simona Perotto, Gianluigi Rozza, Fausto Saleri, Benjamin Stamm, Alberto Valli,
Alessandro Veneziani, and Cristoph Winkelmann. Special thanks go to Luca Paglieri
for the technical assistance, to Francesca Bonadei of Springer for supporting this
project since its very first Italian edition, and, last but not least, to Silvia Quarteroni
for the translation from Italian and to Simon G. Chiossi for the linguistic revision of
the second edition.

Milan and Lausanne, October 2013 Alfio Quarteroni
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