Interdisciplinary Applied Mathematics 53

Dominique Jeulin

Morphological
Models

of Random
Structures



Interdisciplinary Applied Mathematics

Volume 53

Editors

Anthony Bloch, University of Michigan, Ann Arbor, MI, USA

Charles L. Epstein, University of Pennsylvania, Philadelphia, PA, USA
Alain Goriely, University of Oxford, Oxford, UK

Leslie Greengard, New York University, New York, USA

Advisors

L. Glass, McGill University, Montreal, QC, Canada

R. Kohn, New York University, New York, NY, USA

P. S. Krishnaprasad, University of Maryland, College Park, MD, USA
Andrew Fowler, University of Oxford, Oxford, UK

C. Peskin, New York University, New York, NY, USA

S. S. Sastry, University of California, Berkeley, CA, USA

J. Sneyd, University of Auckland, Auckland, New Zealand

Rick Durrett, Duke University, Durham, NC, USA



Problems in engineering, computational science, and the physical and biological
sciences are using increasingly sophisticated mathematical techniques. Thus, the
bridge between the mathematical sciences and other disciplines is heavily traveled.
The correspondingly increased dialog between the disciplines has led to the
establishment of the series: Interdisciplinary Applied Mathematics.

The purpose of this series is to meet the current and future needs for the
interaction between various science and technology areas on the one hand and
mathematics on the other. This is done, firstly, by encouraging the ways that
mathematics may be applied in traditional areas, as well as point towards new and
innovative areas of applications; and secondly, by encouraging other scientific
disciplines to engage in a dialog with mathematicians outlining their problems to
both access new methods as well as to suggest innovative developments within
mathematics itself.

The series will consist of monographs and high-level texts from researchers
working on the interplay between mathematics and other fields of science and
technology.

More information about this series at http://www.springer.com/series/1390



Dominique Jeulin

Morphological Models
of Random Structures

@ Springer



Dominique Jeulin

Centre de Morphologie Mathématique
MINES ParisTech

Fontainebleau, France

ISSN 0939-6047 ISSN 2196-9973  (electronic)
Interdisciplinary Applied Mathematics
ISBN 978-3-030-75451-8 ISBN 978-3-030-75452-5 (eBook)

https://doi.org/10.1007/978-3-030-75452-5

Mathematics Subject Classification: 60-XX, 00A69, 35Q60, 35Q74, 35R60, 52A22, 60H15, 60D05,
60G60, 60G70, 60J75, 60K35, 60K40, 74A40, 74A45, 74E30, 74E35, 74Q20, 74R05, 74R10, 74560,
76M28, 76M50, 76S05, 78A48, 78M40, 82B43

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2021

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Dedicated to my wife Anne-Marie,

to my children Frangois, Guillaume,
Clotilde and Bénédicte

In memory of my parents



Preface

This book covers methods of Mathematical Morphology to model and sim-
ulate random sets and functions (scalar and multivariate).

These models concern many physical situations in heterogeneous media,
where a probabilistic approach is required: fracture statistics of materials,
scaling up of permeability in porous media, electron microscopy images (in-
cluding multispectral images), rough surfaces, multicomponent composites,
biological tissues, and also textures for image coding and synthesis... The
common feature of these random structures is their domain of definition in
n dimensions (with n > 3), requiring more general models than standard
Stochastic Processes.

The present book is based on my own research developments and appli-
cations, most of them being available as papers in journals and proceedings.
It develops various models of random structures available for applications,
and details their probabilistic properties. A unified approach is followed in
random structure modeling and simulations. The book covers all steps of
modeling. Some topics detailed here are missing in previous books limited
to random sets: models of scalar and multivariate random functions, mul-
tiscale models, use of random models to predict the physical behavior of
microstructure (like effective properties, or fracture statistics). Concerning
applications given to illustrate the theory, they are based on quantitative
image analysis made on representative samples.

The main topics of the present book cover an introduction to the the-
ory of random sets, random space tesselations, Boolean random sets and
functions, space-time random sets and functions (Dead Leaves, Alternate
Sequential models, Reaction-Diffusion), prediction of effective properties
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viii Preface

of random media, and probabilistic fracture theories. The book details the
construction of models, their main probabilistic properties, and their prac-
tical use from experimental data by means of examples of application.

This book collects results of near 50 years of research in the area of
random media, which are widely dispersed in scientific publications in var-
ious areas, and in lecture notes. In addition, some unpublished new results
are provided. It is intended to make available to the scientific community
tools of research in the area probabilistic modeling. It will be of interest
for researchers and research engineers in the areas of applied mathematics,
image analysis, and applications of models of random structures. It will
be greatly profitable to theoreticians and practitioners of the simulation
and prediction of physical properties of heterogeneous microstructures, as
encountered in heterogeneous natural or man-made materials or in life sci-
ences. It will be a source of inspiration for further research in these fields.
Graduate students and teachers in applied probability will learn develop-
ments on the theory and applications of random structures.
Fontainebleau, Dominique Jeulin
August 30th 2020
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Symbols and Notations

Morphological operations

Minkowski addition of sets A and K:

A® K =Upeayer{z +y} = Uyex Ay = Upea K,

Minkowski substraction of sets A and K: A K = Nyex Ay = (A°DK)°
Dilation by a compact set K : A — A @K = {z, K, N A # (0}

Erosion by a compact set K : A - A 0K = {z, K, C A}

Opening by a compact set K : Ax = A 6K & K

Closing by a compact set K : AKX = A K 6 K

Indicator function of set A: 14(z) =1ifz € A
usc (upper semi continuous) transformation
Isc (lower semi-continuous) transformation

Convex hull C(A)

Random sets

A, B: random closed sets (RACS)

A¢: complementary set of A

A ={—xz,x € A}: transposed set of A

A;: component of a multi-component random set
B(r): closed ball with radius r

K: compact set

E: topological space

F, G and K : closed, open and compact sets of F
FE={FeF, FNK=0, K cK}

xi



xii Symbols and Notations

Fe={FeF; FNG+#0,Geg}

Probability P

Gk (s): generating function of the random variable N(K)

Choquet’s capacity T(K) = P{KNA # 0} = P{Fx} =1—- P{K C

A7) =1- Q(K)
p=P{x e A}
q=P{z e A%}

Covariance C'(h) = P{z € A,z + h € A}

Covariance Q(h) = P{z € A°,x + h € A}

Covariance Cj;(h) = P{z € A,z + h € A;} for a multi-component
random set

Three points Probability Q(hq, he) = P{z € A°,z+h1 € A%, xz+he € A°}

Segment I: P(I) = P{l C A}; Q(I) = P{l C A°}

Hexagon H(r): P(H(r)) = P{H(r) C A}; Q(H(r) = P{H(r) C A°}

R(z, A): distance between the point z and the set A

Autodual random sets: A and A¢ have the same Choquet capacity

Measurements

wu(A): measure of A

i, Lebesgue measure in R™

Volume of A: V(A)

Integral of mean curvature of A: M(A)

Surface area of A: S(A)

Perimeter of A (in R?): L(A)

Specific connectivity number in R?: N4(A)

Specific connectivity number in R3: Ny (A) — Gy (A)

Minkowski functionals of A: W;(A)

Minkowski tensors of A: W)»*(A)

Size distribution in number: F(A), in measure: G())
Geodesic distance between ¢ € A and y € A: da(z,y)
Morphological tortuosity 74 (z,y) = da(z,y)/ ||z — y||

Random Functions

Random Function Z(x)

test function g(x)

&(E): set of functions from E — R

upper semi continuous random functions (usc RF)

@y C ®: set of usc functions from E — R

Choquet’s capacity T(g) = P{z € Dz(9)};Dz(9)¢ = {z,Z(z +y) <
9(y),Vy € K}

lower semi continuous random functions (Isc RF)

@, C @ : set of Isc functions from E — R

functional P(g) = P{z € Hz(9)}; Hz(g9) = {z, Z(z+y) > g(y),Vy € K}



Symbols and Notations xiii

subgraph I'¢ of the function p: I'? = {z, 2}, 2 € E, z € R, with z < ¢(x)

overgraph I',: I, = {z,2}, x € E, 2 € R, with 2 > ¢(z)

excursion set above level z: Az (z) = {z, Z(z) > 2}

V: supremum; Zy(K) = Vyex{Z(2)}

A: infimum; Za(K) = NApex{Z(z)}

dilation of Z Dby a function ¢ (with g(z) = g(—=x)): Z @ g(z) =
Vyern{Z(y) +9(y — =)}

erosion of Z by a function g (with g(z) = g(—z)): Z & g(z) =
Nyern{Z(y) — g(y — 2)}

opening of Z by g: ¥y (Z) =(ZS§) Dy

closingof Z by g:W9(Z)=(Z®§)Og

thresholding: Az(z) = {z, Z(z) > =}

spatial law: F(z,2) = P{Z(x1) < z1,.., Z(Tm) < zm } with x € E™ and
zeR

spatial law: T'(z,2) = P{Z(x1) > 21, .., Z(Tm) > zm} with z € E™ and
zeR"

F(z), G(z) distribution functions (with density, or pdf f(z) and g(z))

S coefficient of variation of a distribution

D?[Z]: variance of the random variable Z

Hermite polynomials H,(z)

Bivariate distribution Fj;(h, z1,22) = P{Z;(x) < z1, Z;j(x + h) < 22}

Bivariate distribution Tj;(h, z1, 22) = P{Z;(z) > z1, Zj(x + h) > 22}

Bivariate distribution T3 (h, 21, 22) = P{Z(x) > z1, Z(x + h) > 23}

Covariance C(z,z + h) and second order central correlation function
Wz (x, T+ h)

Integral range A,

RVE: Representative Volume Element

v1(h), vo(h): variograms of order 1 and 2

g(h): transitive covariogram

Central correlation function of order m W, (z), with x € E™

Z(V): average of Z(z) in volume V

Mathematical expectation E{.}

D(u), P(ur,u2),  P(u1,us,...,uy): characteristic functions of F(z),
F(Zla 22)7 F(Zla 22y eney Zm)

Models

Random sets

BRS: Boolean random set model: RACS A with primary grain A’
Intensity 6

Primary grain A’:

geometrical covariogram K (h) =fi,(A’'NA",)

normalized covariogram r(h) = K (h)/K(0)

s(ha, ha) = T, (A" 0 A, OAL, ) /K (0)

IBRS: infinitesimal Boolean random set; time ¢; Intensity 6(¢)
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DLRT: Dead Leaves tesselation: N;(t): specific number of intact grains;
©ar, @ar: pdf of grains and of intact grains

STIT: random tessellation stable under iterations

Poisson varieties Vi (w), with intensity 6(w)

Probabilistic Texture segmentation: probabilistic distance between re-
giOIlS Az and Aji P(AZ, Aj, d)

Random functions (RF)

BRF: Boolean random function Z(z)

Gaussian RF

DLRF: Dead Leaves random function

TDLRF: Transparent Dead Leaves random function

IBRF: infinitesimal Boolean random function; time ¢; Intensity 6(t)

MUJF': sequential RF with Markovian jumps

SARF: Sequential alternate random function

Z!(x): Primary random function, with subgraph I'% = A’(t) and sections
Az (z)

©(Z): transformation of the RF Z by the anamorphosis ¢

DRF: Dilution RF: (U, X) and ¢,(U, X): multivariate characteristic
functions of the RF Z(z) and Z/(z)

Z x p(zx): convolution of the RF Z(z) by a weight function p(z)

Reaction-Diffusion RF; coefficients of diffusion D;

Change of scale in random media

Elasticity: stress o, strain e, elasticity tensor C; isotropic elasticity: bulk
modulus K, shear modulus G, Young’s modulus F, Poisson coefficient v

Fluid flow: pressure gradient 9;p, fluid velocity u, kinematical viscosity u;
macroscopic flow rate @, macroscopic pressure gradient 0; P, permeability
K

Electrostatics: dielectric displacement D, electric field F, potential ¢,
permittivity e, energy U

FE: Finite Elements

KUBC: Kinematic Uniform Boundary Conditions

SUBC: Static uniform Boundary Conditions

PBC: Periodic Boundary Conditions

FFT: Fast Fourier Transform

RVE: Representative Volume Element

Green’s function in electrostatics G(x,y)
Operator I'(x, y) in electrostatics, with components I5;(z,y) = %G(m, Y)

Hashin-Shrikman bounds H-S; upper H-ST, lower H-S—

1(p) and n; (p): Milton functions for Beran-Molyneux-McCoy third order
bounds

P, (u): Legendre polynomials

Fracture statistics: og, fracture stress; &(o), intensity of defects with
critical stress o, < o
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Random fracture energy I'; energy release rate G; fracture toughness G;
SVE: Statistical Volume Element in fracture
(o) phase field in fracture; I.s¢: effective toughness
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