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Preface

The Wiener process and the Poisson random measure are fundamental to the study
of stochastic processes; the former describes a continuous random evolution, and
the latter describes a random phenomenon that occurs at a random time. It was
shown in the 1940s that any Lévy process (process with independent increments) is
represented by a Wiener process and a Poisson random measure, called the Lévy–
Itô representation. Further, Itô defined a stochastic differential equation (SDE) based
on a Wiener process. He defined also an equation based on a Wiener process and a
Poisson random measure. In this monograph, we wish to present a modern treatment
of SDE and diffusion and jump-diffusion processes. In the first part, we will show
that solutions of SDE will define stochastic flows of diffeomorphisms. Then, we
discuss the relation between stochastic flows and heat equations. Finally, we will
investigate fundamental solutions of these heat equations (heat kernels), through the
study of the Malliavin calculus.

It seems to be traditional that diffusion processes and jump processes are
discussed separately. For the study of the diffusion process, theory of partial
differential equations is often used, and this fact has attracted a lot of attention. On
the other hand, the study of jump processes has not developed rapidly. One reason
might be that for the study of jump processes, we could not find effective tools in
analysis such as the partial differential equation in diffusion processes. However,
recently, the Malliavin calculus for Poisson random measure has been developed,
and we can apply it to some interesting problems of jump processes.

A purpose of this monograph is that we present these two theories simultane-
ously. In each chapter, we start from continuous processes and then proceed to
processes with jumps. In the first half of the monograph, we present the theory
of diffusion processes and jump-diffusion processes on Euclidean spaces based
on SDEs. The basic tools are Itô’s stochastic calculus. In Chap. 3, we show that
solutions of these SDEs define stochastic flows of diffeomorphisms. Then in
Chap. 4, relations between a diffusion (or jump-diffusion) and a heat equation (or a
heat equation associated with integro-differential equation) will be studied through
properties of stochastic flow.
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viii Preface

In the latter half of the monograph, we will study the Malliavin calculus on
the Wiener space and that on the space of Poisson random measure. These two
types of calculus are quite different in detail, but they have some interesting things
in common. These will be discussed in Chap. 5. Then in Chap. 6, we will apply
the Malliavin calculus to diffusions and jump-diffusions determined by SDEs. We
will obtain smooth densities for transition functions of various types of diffusions
and jump-diffusions. Further, we show that these density functions are fundamental
solutions for various types of heat equations and backward heat equations; thus, we
construct fundamental solutions for heat equations and backward heat equations,
independent of the theory of partial differential equations. Finally, SDEs on
subdomains of a Euclidean space and those on manifolds will be discussed at the
end of Chaps. 6 and 7.

Acknowledgements Most part of this book was written when the author was working on
Malliavin calculus for jump processes jointly with Masaaki Tsuchiya and Yasushi Ishikawa in
2014–2017. Discussions with them helped me greatly to make and rectify some complicated norm
estimations, which cannot be avoided for getting the smooth density. The contents of Sects. 5.5,
5.6, and 5.7 overlap with the joint work with them [46]. Further, Ishikawa read Chap. 7 carefully
and gave me useful advice. I wish to express my thanks to them both. I would also like to thank
the anonymous referees and a reviewer, who gave me valuable advices for improving the draft
manuscript. Finally, it is my pleasure to thank Masayuki Nakamura, editor at Springer, who helped
me greatly toward the publication of this book.
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Introduction

Stochastic differential equations (SDEs) based on Wiener processes have been
studied extensively, after Itô’s work in the 1940s. One purpose was to construct
a diffusion process satisfying the Kolmogorov equation. Results may be found in
monographs of Stroock–Varadhan [109], Ikeda–Watanabe [41], Oksendal [90], and
Karatzas–Shreve [55]. Later, the geometric property of solutions was studied. It was
shown that solutions of an SDE based on a Wiener process define a stochastic flow
of diffeomorphisms [59].

In 1978, Malliavin [77] introduced an infinite-dimensional differential calculus
on a Wiener space. The theory had an interesting application to solutions of
SDEs based on the Wiener process. He applied the theory to the regularity of the
heat kernel for hypo-elliptic differential operators. Then, the Malliavin calculus
developed rapidly. Contributions were made by Bismut [9], Kusuoka–Stroock
[69, 71], Ikeda–Watanabe [40, 41], Watanabe [116, 117], and many others.

At the same period, the Malliavin calculus for jump processes was studied in
parallel (see Bismut [10], Bichteler–Gravereau–Jacod [7], and Leandre [74]). Later,
Picard [92] proposed another approach to the Malliavin calculus for jump processes.
Instead of the Wiener space, he developed the theory on the space of Poisson random
measure and got a smooth density for the law of a “nondegenerate” jump Markov
process. Then, Ishikawa–Kunita [45] combined these two theories and got a smooth
density for the law of a nondegenerate jump-diffusion. Thus, the Malliavin calculus
can be applied to a large class of SDEs.

In this monograph, we will study two types of SDEs defined on Euclidean space
and manifolds. One is a continuous SDE based on a Wiener process and smooth
coefficients. We will define the SDE by means of Fisk–Stratonovich symmetric
integrals, since its solution has nice geometric properties. The other is an SDE
with jumps based on the Wiener process and the Poisson random measure, where
coefficients for the continuous part are smooth vector fields and coefficients for jump
parts are diffeomorphic maps. These two SDEs are our basic objects of study. We
want to show that both of these SDEs generate stochastic flows of diffeomorphisms
and these stochastic flows define diffusion processes and jump-diffusion processes.
In the course of the argument, we will often consider backward processes, i.e.,
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x Introduction

stochastic processes describing the backward time evolution. It will be shown
that inverse maps of a stochastic flow (called the inverse flow) define a backward
Markov process. Further, we show that the dual process is a backward Markov
process and it can be defined directly by the inverse flow through an exponential
transformation. In each chapter, we will start with topics related to Wiener processes
and then proceed to those related to Poisson random measures. Investigating these
two subjects together, we can understand both the Wiener processes and Poisson
random measures more strongly.

Chapters 1 and 2 are preliminaries. In Chap. 1, we propose a method of studying
the smooth density of a given distribution, through its characteristic function
(Fourier transform); it will be applied to the density problem of infinitely divisible
distributions. Then, we introduce some basic stochastic processes and backward
stochastic processes. These include Wiener processes, Poisson random measures,
martingales, and Markov processes. In Chap. 2, we discuss stochastic integrals. Itô
integrals and Fisk–Stratonovich symmetric integrals based on continuous martin-
gales and Wiener processes are defined, and Itô’s formulas are presented. Then,
we define stochastic integrals based on (compensated) Poisson random measures.
Further, we will give Lp-estimates of these stochastic integrals; these estimates
will be used in Chaps. 3 and 6 for checking that stochastic flows have some nice
properties. The backward stochastic integrals will also be discussed.

In Chap. 3, we will revisit SDEs and stochastic flows, which were discussed by
the author [59, 60]. A continuous SDE on d-dimensional Euclidean space Rd based
on a d ′-dimensional Wiener process (W 1

t , . . . ,W
d ′
t ) is given by

dXt =
d ′
∑

k=1

Vk(Xt , t) ◦ dW k
t + V0(Xt , t) dt, (1)

where ◦dW k
t denotes the symmetric integral based on the Wiener process W k

t . If
coefficients Vk(x, t), k = 0, . . . , d are of C∞,1

b -class, it is known that the family of
solutions {Xx,s

t , s < t} of the SDE, starting from x at time s, have a modification
{Φs,t (x), s < t}, which is continuous in s, t, x and satisfies (a) Φs,t : Rd → R

d are
C∞-diffeomorphisms, (b) Φs,u = Φt,u ◦ Φs,t for any s < t < u almost surely, and
(c) Φs,t and Φt,u are independent. {Φs,t } is called a continuous stochastic flow of
diffeomorphisms defined by the SDE.

A similar problem was studied for SDE based on the Wiener process and the
Poisson random measure. Let N(dt dz) be a Poisson random measure on the space
U = [0, T ] × (Rd ′ \ {0}) with the intensity measure n(dt dz) = dtν(dz), where ν

is a Lévy measure having a “weak drift.” We consider an SDE driven by a Wiener
process and Poisson random measure:

dXt =
d ′
∑

k=1

Vk(Xt , t) ◦ dW k
t + V0(Xt , t) dt +

∫

|z|>0+
(φt,z(Xt−)−Xt−)N(dt dz),

(2)
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where {φt,z} is a family of diffeomorphic maps on R
d with some regularity

conditions (precise conditions will be stated in Sect. 3.2). It was shown that solutions
define a stochastic flow of diffeomorphisms stated above (Fujiwara–Kunita [30]).
In this monograph, we will prove these facts through discussions of the “master
equation” and “backward SDE.” By using them, some complicated arguments in
previous works [30, 59] are simplified. Further, we will define a backward SDE
based on a Wiener process and another based on Wiener process and Poisson
random measure. These backward SDEs define backward stochastic flows of
diffeomorphisms.

The solution of an SDE (or a backward SDE) based on a Wiener process defines
a diffusion process (continuous strong Markov process) (or backward diffusion
process). Further, the solution of an SDE (or backward SDE) based on a Wiener
processes and a Poisson random measure defines a jump-diffusion (or a backward
jump-diffusion). We will study these diffusion and jump-diffusion processes. Let
{Ps,t } be the semigroup defined by Ps,tf (x) = E[f (Φs,t (x))]. In the case of
a diffusion process on R

d , its generator is given by a second-order differential
operator

A(t)f (x) = 1

2

d ′
∑

k=1

Vk(t)
2f (x)+ V0(t)f (x), (3)

where Vk(t), k = 0, 1, . . . , m are first-order partial differential operators defined by
Vk(t)f (x) =

∑

i V
i
k (x, t)

∂
∂xi

f (x). In the case of a jump-diffusion process on R
d ,

the generator is given by an integro-differential operator of the form

AJ (t)f = 1

2

d ′
∑

k=1

Vk(t)
2f (x)+ V0(t)f (x)+

∫

|z|>0+
{f (φt,z(x))− f (x)}ν(dz),

(4)
where the last integral is an improper integral.

In Chap. 4, we study the relation between stochastic flows and time-dependent
heat equations and backward heat equations associated with the differential operator
A(t) of (3) and integro-differential operator AJ (t) of (4), respectively. For a given
time t1 and a bounded smooth function f1(x), the function v(x, s) := Ps,t1f1(x) =
E[f1(Φs,t1(x))] is a smooth function of x. Further, in the case of diffusions, v(x, s)
is the unique solution of the final value problem of the time-dependent backward
heat equation:

∂

∂s
v(x, s) = −A(s)v(x, s) for s < t1, v(t1, x) = f1(x). (5)

This fact will be extended to a more general class of the operator A(t). Consider

Ac(t)f = 1

2

d ′
∑

k=1

(Vk(t)+ ck(t))
2f + (V0 + c0)f, (6)
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where c = (ck(x, t); k = 0, 1, . . . , m) are bounded smooth functions. We show that
the semigroup with the generator Ac(t) is obtained by an exponential transformation
based on ck(x, t); it is given by P c

s,tf (x) = E[f (Φs,t (x))Gs,t (x)], where

Gs,t (x) = exp
{

∑

k≥1

∫ t

s

ck(Φs,r(x), r) ◦ dW k
r +

∫ t

s

c0(Φs,r(x) dr
}

.

Further, v(x, s) := P c
s,t1

f1(x) is the unique solution of the final value problem (5)
associated with the operator Ac(t). For jump-diffusion processes, we will also
extend the integro-differential operator AJ (t) to another one, which will be denoted
by A

c,d
J (t). Then, we will study the final value problem of the backward heat

equation associated with the operator Ac,d
J (t) (see Sect. 4.5).

We are also interested in the initial value problem of the time-dependent heat
equation associated with the operator Ac(t) given by (6):

∂

∂t
u(t, x) = Ac(t)u(t, x) for t > t0, u(t0, x) = f0(x). (7)

For this problem, we solve SDE (1) to the backward direction and obtain a backward
stochastic flow {Φ̌s,t }; then, we define a backward semigroup by P̌ c

s,tf (x) :=
E
[

f (Φ̌s,t (x))Ǧs,t (x)
]

, where Ǧs,t (x) is the exponential functional associated with

the backward flow {Φ̌s,t }. Then, if f0(x) is a bounded smooth function, the solution
of the forward equation (7) exists uniquely, and it is represented by u(x, t) =
P̌ c
t0,t

f0(x).
We stress that the final function f1 (or initial function f0) is smooth in these

studies. Indeed, the smoothness of functions v(x, s) = P c
s,tf1(x), etc. with respect

to x follows from the smoothness of f1(x) and the stochastic flow Φs,t (x) with
respect to x, a.s. If the function f1 is not smooth, we need additional arguments for
the solution of equations (5) and (7), which will be discussed in Chap. 6 using the
Malliavin calculus.

Another subject of Chap. 4 is the investigation of the dual of a given diffusion
and a jump-diffusion with respect to the Lebesgue measure. It will be shown that the
dual of these processes can be constructed through the change-of-variable formula
concerning stochastic flows {Φs,t }; the stochastic process defined by the inverse
maps X̌s = Ψ̌s,t (x) = Φ−1

s,t (x) should be a dual process of Xt = Φs,t (x), and it
is a backward diffusion or a backward jump-diffusion with respect to s, where t is
the initial time of the process. The dual semigroup of the semigroup {Ps,t } is then
defined by using the inverse flow {Ψ̌s,t } as

P ∗
s,tg(x) = E[g(Ψ̌s,t (x)) det∇Ψ̌s,t (x)],

where ∇Ψ̌s,t is the Jacobian matrix of the diffeomorphism Ψ̌s,t ;Rd → R
d .
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In the latter half of this monograph, we will study the Malliavin calculus on the
Wiener space and the space of Poisson random measure, called Poisson space; we
will apply it for proving the existence of fundamental solutions for heat equations
discussed in Chap. 4.

In Chap. 5, we will discuss the Malliavin calculus on the Wiener space and that
on the Poisson space (space of Poisson random measure) separately. Then, we will
combine these two. For the Malliavin calculus on the Wiener space, we will restrict
our attention to the problem of finding the smooth density for laws of Wiener
functionals. Our discussion is motivated by Malliavin and Watanabe (Watanabe
[116, 117]), but we will take a simple and direct approach; we will not consider
the Ornstein–Uhlenbeck semigroup on the Wiener space. Instead, we study the
derivative operator Dt and its adjoint δ (Skorohod integral) directly. Then, we give
an estimate of Skorohod integrals using Lp-Sobolev norms; a new proof is given for
Theorem 5.2.1. A criterion for the smooth density of laws of Wiener functional will
be given in terms of the celebrated “Malliavin covariance” in Sect. 5.3.

Another reason why we do not follow Ornstein–Uhlenbeck semigroup argument
is that a similar fact is not known for Poisson space; in fact, we want to bring
together the Malliavin calculus on the Wiener space and that on the Poisson space in
a unified method. In Sects. 5.4, 5.5, 5.6, 5.7, and 5.8, we will discuss the Malliavin
calculus on the Poisson space, which is characterized by a Lévy measure ν. A basic
assumption for the Poisson random measure is that the characterizing Lévy measure
is nondegenerate and satisfies the order condition at the center. Here, the origin 0 is
regarded as the center of the Lévy measure defined on R

d ′ \ {0}. We will see that the
difference operator D̃u and its adjoint operator δ̃ defined by Picard [92] work well
as Dt and δ do on the Wiener space.

Criteria of the smooth density for Poisson functionals are more complicated. We
need a family of Lp-Sobolev norms conditioned to a family of neighborhoods of the
center of the Lévy measure. It will be given in Sects. 5.5, 5.6, 5.7, and 5.8. Further,
in Sects. 5.9, 5.10, and 5.11, we will study the Malliavin calculus on the product of
the Wiener space and the Poisson space. A criterion for the smooth density of the
law of a Wiener–Poisson functional will be given after introducing the “Malliavin
covariance at the center.”

In the application of the Malliavin calculus to solutions of an SDE, properties of
stochastic flows defined by the SDE are needed. In Chap. 6, we study the existence
of smooth densities of laws of a nondegenerate diffusion and a nondegenerate
jump-diffusion defined on a Euclidean space. The class of nondegenerate diffusions
includes elliptic diffusions and hypo-elliptic diffusions. Further, the class of non-
degenerate jump-diffusions includes pseudo-elliptic jump-diffusions. Let P c

s,t (or

P
c,d
s,t ) be the semigroup associated with the generator Ac(t) (or A

c,d
J (t)). It will be

shown that its transition functions P c
s,t (x, ·) (or P c,d

s,t (x, ·)) have densities pc
s,t (x, y)

(or pc,d
s,t (x, y)), which are smooth with respect to both variables x and y, and further,

the family of the densities is the fundamental solution of the backward heat equation
associated with the operator Ac(t) (or Ac,d

J (t)); the fundamental solution of the heat
equation will be obtained as a family of density functions of a backward transition



xiv Introduction

function P̌ c
s,t (x, E) associated with the semigroup {P̌ c

s,t }, etc. Thus, initial–final
value problems (5) and (7) are solved for any bounded continuous functions f0

and f1, respectively.
In Sects. 6.7 and 6.8, for elliptic diffusions and pseudo-elliptic jump-diffusions,

we will discuss the short-time asymptotics of the transition density functions as t ↓
s, making use of the Malliavin calculus. Our Malliavin calculus cannot be applied
to jump processes or jump-diffusion processes which admit big jumps. Indeed, in
order to apply the Malliavin calculus, solution Xt of the SDE should be at least an
element of L∞− =

⋂

p>1 L
p, and the fact excludes solutions of SDEs with big

jumps. In Sect. 6.9, we consider such processes: we first truncate big jumps and
get the smooth density. Then, we add big jumps and show that this action should
preserve the smooth density, where the short-time asymptotics of the fundamental
solution will be utilized.

It is hard to apply the Malliavin calculus directly to (jump) diffusions on a
bounded domain of a Euclidean space or those defined on a manifold. In Sect. 6.10,
we consider a process killed outside of a bounded domain of a Euclidean space. In
order to get a smooth density for the killed process, we need two facts. One is a
short-time estimate of the density of a non-killed process. The other is a potential
theoretic argument of a strong Markov process using hitting times. We show that the
density function qc

s,t (x, y) of the killed transition function is smooth with respect
to x and y; further, we show that qc

s,t (x, y) is the fundamental solution for the
backward heat equation (5) on an arbitrary bounded domain of a Euclidean space
with the Dirichlet boundary condition.

Finally, in Chap. 7, we study SDEs on a manifold. Stochastic flow generated by
an SDE on a manifold will be discussed in Sect. 7.1. Diffusions, jump-diffusions,
and their duals will be treated in Sects. 7.2 and 7.3. Then, the smooth density for a
(jump) diffusion on a manifold will be obtained by piecing together killed densities
on local charts. It will be discussed in Sects. 7.4 and 7.5.

A Guide for Readers Discussions of the Malliavin calculus for Poisson random
measures contain some complicated and technical arguments. For the beginner or
the reader who is mainly interested in Wiener processes and diffusion processes, we
suggest to skip these arguments at the first reading. After Chap. 4, we could proceed
in the following way:

Chapter 5, Sects. 5.1, 5.2, 5.3 −→ Chap. 6, Sects. 6.1, 6.2, 6.3, 6.7, 6.8, 6.10 −→
Chap. 7, Sects. 7.1, 7.2, 7.3, 7.4.

The author hopes that this course should be readable.
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