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Foreword

Since its inception about a decade ago, the theory of Mean Field Games has rapidly
developed into one of the most significant and exciting sources of progress in the
study of the dynamical and equilibrium behavior of large systems. The introduction
of ideas from statistical physics to identify approximate equilibria for sizeable
dynamic games created a new wave of interest in the study of large populations
of competitive individuals with “mean field” interactions. This two-volume book
grew out of series of lectures and short courses given by the authors over the last
few years on the mathematical theory of Mean Field Games and their applications
in social sciences, economics, engineering and finance. While this is indeed the
object of the book, by taste, background, and expertise, we chose to focus on the
probabilistic approach to these game models.

In a trailblazing contribution, Lasry and Lions proposed in 2006 a methodology
to produce approximate Nash equilibria for stochastic differential games with
symmetric interactions and a large number of players. In their models, a given
player feels the presence and the behavior of the other players through the empirical
distribution of their private states. This type of interaction was extensively studied
in the statistical physics literature under the name of mean field interaction, hence
the terminology Mean Field Game coined by Lasry and Lions. The theory of these
new game models was developed in lectures given by Pierre-Louis Lions at the
Collège de France which were video-taped and made available on the internet.
Simultaneously, Caines, Huang, and Malhamé proposed a similar approach to large
games under the name of Nash Certainty Equivalence principle. This terminology
fell from grace and the standard reference to these game models is now Mean Field
Games.

While slow to pick up momentum, the subject has seen a renewed wave of
interest over the last seven years. The mean field game paradigm has evolved
from its seminal principles into a full-fledged field attracting theoretically inclined
investigators as well as applied mathematicians, engineers, and social scientists.
The number of lectures, workshops, conferences, and publications devoted to the
subject has grown exponentially, and we thought it was time to provide the applied
mathematics community interested in the subject with a textbook presenting the
state of the art, as we see it. Because of our personal taste, we chose to focus on what
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vi Foreword

we like to call the probabilistic approach to mean field games. While a significant
portion of the text is based on original research by the authors, great care was taken
to include models and results contributed by others, whether or not they were aware
of the fact they were working with mean field games. So the book should feel and
read like a textbook, not a research monograph.

Most of the material and examples found in the text appear for the first time in
book form. In fact, a good part of the presentation is original, and the lion’s share
of the arguments used in the text have been designed especially for the purpose of
the book. Our concern for pedagogy justifies (or at least explains) why we chose to
divide the material in two volumes and present mean field games without a common
noise first. We ease the introduction of the technicalities needed to treat models with
a common noise in a crescendo of sophistication in the complexity of the models.
Also, we included at the end of each volume four extensive indexes (author index,
notation index, subject index, and assumption index) to make navigation throughout
the book seamless.
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Preface to Volume I

This first volume of the book is entirely devoted to the theory of mean field games in
the absence of a source of random shocks common to all the players. We call these
models games without a common noise. This volume is divided into two main parts.
Part I is a self-contained introduction to mean field games, starting from practical
applications and concrete illustrations, and ending with ready-for-use solvability
results for mean field games without a common noise. While Chapters 1 and 2
are mostly dedicated to games with a finite number of players, the asymptotic
formulation which constitutes the core of the book is introduced in Chapter 3.
For the exposition to be as pedagogical as possible, we chose to defer some of
the technical aspects of this asymptotic formulation to Chapter 4 which provides a
complete toolbox for solving forward-backward stochastic differential equations of
the McKean-Vlasov type. Part II has a somewhat different scope and focuses on the
main principles of analysis on the Wasserstein space of probability measures with
a finite second moment, which plays a key role in the study of mean field games
and which will be intensively used in the second volume of the book. We present
the mathematical theory in Chapter 5, and we implement its results in Chapter 6
with the analysis of stochastic mean field control problems, which are built upon a
notion of equilibrium different from the search for Nash equilibria at the root of the
definition of mean field games. Extensions, including infinite time horizon models
and games with finite state spaces, are discussed in the epilogue of this first volume.

The remainder of this preface expands, chapter by chapter, the short content
summary given above. A diagram summarizing the connections between the
different components of the book is provided on page xix.

The first chapter sets the stage for the introduction of mean field games with a
litany of examples of increasing complexity. Starting with one-period deterministic
games with a large number of players, we introduce the mean field game paradigm.
We use examples from domains as diverse as finance, macroeconomics, population
biology, and social science to motivate the introduction of mean field games
in different mathematical settings. Some of these examples were studied in the
literature before the introduction of, and without any reference to, mean field games.
We chose them because of their powerful illustrative power and the motivation they
offer for the introduction of new mathematical models. The examples of bank runs

ix



x Preface to Volume I

modeled as mean field games of timing are a case in point. For pedagogical reasons,
we highlight practical applications where the interaction between the players does
not necessarily enter the model through the empirical distributions of the states of
the players, but via the empirical distributions of the actions of the players, or even
the joint empirical distributions of the states and the controls of the players. Most of
these examples will be revisited and solved throughout the book.

Chapter 2 offers a crash course on the mathematical theory of stochastic
differential games with a finite number of players. The material of this chapter is
not often found in book form, and since we make extensive use of its notations and
results throughout the book, we thought it was important to present them early for
the sake of completeness and future references. We concentrate on what we call the
probabilistic approach to the search for Nash equilibria, and we introduce games
with mean field interactions as they are the main object of the book. Explicitly
solvable models are few and far between. Among them, linear quadratic (LQ for
short) models play a very special role because their solutions, when they exist,
can be obtained by solving matrix Riccati equations. The last part of the chapter
is devoted to a detailed analysis of a couple of linear quadratic models already
introduced in Chapter 1, and for which explicit solutions can be derived. To wit,
these models do not require the theory of mean field games since their finite player
versions can be solved explicitly. However, they provide a testbed for the analysis
of the limit of finite player equilibria when the number of players grows without
bound, offering an invaluable opportunity to introduce the concept of mean field
game and discover some of its essential features.

The probabilistic approach to mean field games is the main thrust of the
book. The underpinnings of this approach are presented in Chapter 3. Stochastic
control problems and the search for equilibria for stochastic differential games
can be tackled by reformulating the optimization and equilibrium problems in
terms of backward stochastic differential equations (BSDEs throughout the book)
and forward-backward stochastic differential equations (FBSDEs for short). In this
chapter, we review the major forms of FBSDEs that may be used to represent
the optimal trajectories of a standard optimization problem: the first one is based
on a probabilistic representation of the value function, and the second one on
the stochastic Pontryagin maximum principle. Combined with the consistency
condition issued from the search for Nash equilibria as fixed points of the best
response function, this prompts us to introduce a new class of FBSDEs with a
distinctive McKean-Vlasov character. This chapter presents a basic existence result
for McKean-Vlasov FBSDEs. This result will be extended in Chapter 4. As a by-
product, we obtain early solvability results for mean field games by straightforward
implementations of the two forms of the probabilistic approach just mentioned.
However, since our primary aim in this chapter is to make the presentation as
pedagogical as possible, we postpone the most general versions of the existence
results for mean field games to Chapter 4, as some of the proofs are rather technical.
Instead, we highlight the role of monotonicity, as captured by the so-called Lasry-
Lions monotonicity conditions, in the analysis of uniqueness of equilibria. Finally,
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we specialize the results of this chapter to the case of linear-quadratic mean field
games, which can be handled directly via the analysis of Riccati equations. Most
of the results of this chapter will be revisited and extended in the second volume
to accommodate a common noise which is found in many economic and physical
applications.

Chapter 4 starts with a stochastic analysis primer on the theory of FBSDEs.
As explained above, in the mean field limit of large games, the fixed point step of
the search for Nash equilibria turns the standard FBSDEs derived from optimization
problems into equations of the McKean-Vlasov type by introducing the distribution
of the solution into the coefficients. These FBSDEs characterize the equilibria. Since
this new class of FBSDEs was not studied before the advent of mean field games,
one of the main objectives of Chapter 4 is to provide a systematic approach to their
solution. We show how to use Schauder’s fixed point theorem to prove existence of
a solution. The chapter closes with the analysis of the so-called extended mean field

games, in which the players are interacting not only through the distribution of their
states but also through the distribution of their controls. Finally, we demonstrate
how the methodology developed in the chapter applies to some of the examples
presented in the opening chapter.

Although it contains very few results on mean field games, Chapter 5 plays a
pivotal role in the book. It contains all the results on spaces of probability measures
which we use throughout the book, including the definitions and properties of the
Wasserstein distances, the convergence of the empirical measures of a sequence of
independent and identically distributed random variables . . . and most importantly, a
detailed presentation of the differential calculus on the Wasserstein space introduced
by Lions in his unpublished lectures at the Collège de France, and by Cardaliaguet
in the notes he wrote from Lions’ lectures. Even though the use of this differential
calculus in the first volume is limited to the ensuing Chapter 6, the differential
calculus on the Wasserstein space plays a fundamental role in the study of the master
equation for mean field games, whose presentation and analysis will be provided in
detail in the second volume. Still, a foretaste of the master equation is given at the
end of this chapter. Its derivation is based on an original form of Itô’s formula for
functionals of the marginal laws of an Itô process, the proof of which is given in full
detail. For the sake of completeness, we also provide a thorough and enlightening
discussion of the connections between Lions’ differential calculus, which we call
L-differential calculus throughout the book, and other forms of differential calculus
on the space of probability measures, among which the differential calculus used in
optimal transportation theory.

One of the remarkable features of the construction of solutions to mean field
game problems is the similarity with a natural problem which did not get much
attention from analysts and probabilists: the optimal control of (stochastic) differ-
ential equations of the McKean-Vlasov type, which could also be called mean field
optimal control. The latter is studied in Chapter 6. Both problems can be interpreted
as searches of equilibria for large populations, claim which will be substantiated
in Chapter 6 in the second volume of the book. Interestingly, the optimal control
of McKean-Vlasov stochastic dynamics is intrinsically a stochastic optimization
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problem while the search for Nash equilibria in mean field games is more of a
fixed point problem than an optimization problem. So despite the strong similarities
between the two problems, differences do exist, and we highlight them starting with
Chapter 6. There, we show that since the problem at hand is a stochastic control
problem, the optimal control of McKean-Vlasov stochastic dynamics can be tackled
by means of an appropriate version of the Pontryagin stochastic maximum principle.
Following this strategy leads to FBSDEs for which the backward part involves the
derivative of the Hamiltonian with respect to a measure argument. This novel feature
is handled with the tools provided in Chapter 5. We close the chapter with the
discussion of an alternative strategy for solving mean field optimal control problems,
based on the notion of relaxed controls. Also, we review several crucial examples,
among them potential games. These latter models are mean field games for which
the solutions can be reduced to the solutions of mean field optimal control problems,
and optimal transportation problems.

Chapter 7 is a capstone which we use to revisit some of the examples introduced
in Chapter 1, especially those which are not exactly covered by the probabilistic
theory of stochastic differential mean field games developed in the first volume.
Indeed, Chapter 1 included a considerable amount of applications hinting at
mathematical models with distinctive features which are not accommodated by
the models and results of the first part of this first volume. We devote this
chapter to presentations, even if only informal, of extensions of the Mean Field
Game paradigm to these models. They include extensions to several homogenous
populations, infinite horizon optimization, and models with finite state spaces. These
mean field game models have a great potential for the quantitative analysis of very
important practical applications, and we show how the technology developed in the
first volume of the book can be brought to bear on their solutions.

Princeton, NJ, USA René Carmona
Nice, France François Delarue
July 29, 2016
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Organization of the Book: Volume I Organigram

Chapters 1 & 2

Finite Games

Chapter 3 & 4

Mean Field Games

Chapter 5

Analysis on

Wasserstein Space

Chapter 6

Mean Field Control

Epilogue I

Part II

Master Equation and

Convergence Problem

Extensions

Part I

Mean Field Games

with a Common Noise

Epilogue II:

more Extensions

Part II

Volume II

Part I

Volume I

Thick lines indicate the logical order of the chapters. The dotted line between
Chapters 3–4 and 6 emphasizes the fact that—in some cases like potential games—
mean field games and mean field control problems share the same solutions. Finally,
the dashed lines starting from Part II (second volume) point toward the games and
the optimization problems for which we can solve approximately the finite-player
versions or for which the finite-player equilibria are shown to converge.

References to the second volume appear in the text in the following forms:
Chapter (Vol II)-X, Section (Vol II)-X:x, Theorem (Vol II)-X:x, Proposition (Vol
II)-X:x, Equation (Vol II)-.X:x/, . . . , where X denotes the corresponding chapter in
the second volume and x the corresponding label.
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