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Preface

Geometric Structures of statistical Physics, Information

Geometry, and Learning

Ecole de Physique des Houches SPIGL’20 Summer Week

SPRINGER Proceedings in Mathematics & Statistics, 2021

Subject

This book is proceedings of Les Houches Summer Week SPIGL’20 (Joint

Structures and Common Foundation of Statistical Physics, Information Geometry

and Inference for Learning) organized from July 27–31, 2020, at L’Ecole de

Physique des Houches:

Website https://franknielsen.github.io/SPIG-LesHouches2020/

Videos: https://www.youtube.com/playlist?list=PLo9ufcrEqwWExTBPgQPJwA

JhoUChMbROr

The conference SPIGL’20 has developed the following topics:

Geometric Structures of Statistical Physics and Information

• Statistical mechanics and geometric mechanics

• Thermodynamics, symplectic and contact geometries

• Lie groups thermodynamics

• Relativistic and continuous media thermodynamics

• Symplectic integrators

v

https://franknielsen.github.io/SPIG-LesHouches2020/
https://www.youtube.com/playlist?list=PLo9ufcrEqwWExTBPgQPJwAJhoUChMbROr
https://www.youtube.com/playlist?list=PLo9ufcrEqwWExTBPgQPJwAJhoUChMbROr


Physical Structures of Inference and Learning

Stochastic gradient of Langevin’s dynamics

Information geometry, Fisher metric, and natural gradient

Monte Carlo Hamiltonian methods

Variational inference and Hamiltonian controls

Boltzmann machine
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Scientific Rational

In the middle of the last century, Léon Brillouin in “The Science and The Theory of

Information” or André Blanc-Lapierre in “Statistical Mechanics” forged the first

links between the theory of information and statistical physics as precursors.

In the context of artificial intelligence, machine learning algorithms use more

and more methodological tools coming from the physics or the statistical

mechanics. The laws and principles that underpin this physics can shed new light on

the conceptual basis of artificial intelligence. Thus, the principles of maximum

entropy, minimum of free energy, Gibbs–Duhem’s thermodynamic potentials and

the generalization of François Massieu’s notions of characteristic functions enrich

the variational formalism of machine learning. Conversely, the pitfalls encountered

by artificial intelligence to extend its application domains question the foundations

of statistical physics, such as the construction of stochastic gradient in large

dimension, the generalization of the notions of Gibbs densities in spaces of more

elaborate representation like data on homogeneous differential or symplectic

manifolds, Lie groups, graphs, and tensors.

Sophisticated statistical models were introduced very early to deal with unsu-

pervised learning tasks related to Ising–Potts models (the Ising–Potts model defines

the interaction of spins arranged on a graph) of statistical physics and more gen-

erally the Markov fields. The Ising models are associated with the theory of mean

fields (study of systems with complex interactions through simplified models in

which the action of the complete network on an actor is summarized by a single

mean interaction in the sense of the mean field).

The porosity between the two disciplines has been established since the birth of

artificial intelligence with the use of Boltzmann machines and the problem of robust

methods for calculating partition function. More recently, gradient algorithms for

neural network learning use large-scale robust extensions of the natural gradient of

Fisher-based information geometry (to ensure reparameterization invariance), and

stochastic gradient based on the Langevin equation (to ensure regularization), or

their coupling called “natural Langevin dynamics”.

Concomitantly, during the last fifty years, statistical physics has been the object

of new geometrical formalizations (contact or symplectic geometry, ...) to try to

give a new covariant formalization to the thermodynamics of dynamic systems. We

can mention the extension of the symplectic models of geometric mechanics to

statistical mechanics, or other developments such as random mechanics, geometric

mechanics in its stochastic version, Lie groups thermodynamics, and geometric

modeling of phase transition phenomena.

Finally, we refer to computational statistical physics, which uses efficient

numerical methods for large-scale sampling and multimodal probability measure-

ments (sampling of Boltzmann–Gibbs measurements and calculations of free

energy, metastable dynamics and rare events, ...) and the study of geometric inte-

grators (Hamiltonian dynamics, symplectic integrators, ...) with good properties of

covariances and stability (use of symmetries, preservation of invariants, ...).
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Machine learning inference processes are just beginning to adapt these new inte-

gration schemes and their remarkable stability properties to increasingly abstract

data representation spaces.

Artificial intelligence currently uses only a very limited portion of the conceptual

and methodological tools of statistical physics. The purpose of this conference is to

encourage constructive dialog around a common foundation, to allow the estab-

lishment of new principles and laws governing the two disciplines in a unified

approach. However, it is also about exploring new chemins de traverse.

Main contributors in thermodynamics, statistical physics, information geometry

and Lie group representation theory:
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