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Preface

During the last 20 years, wavelet analysis has become a major research area
in mathematics, not only because of the beauty of the mathematical theory
of wavelet systems (sometimes also called affine systems), but also because of
its significant impact on applications, especially in signal and image process-
ing. After the extensive exploration of orthonormal bases of classical affine
systems that has occupied much of the history of wavelet theory, recently
both wavelet frames — redundant wavelet systems — and irregular wavelet
systems — wavelet systems with an arbitrary sequence of time-scale indices
— have come into focus as a main area of research. Two main reasons for
this are to serve new applications which require robustness against noise and
erasures, and to derive a deeper understanding of the theory of classical affine
systems. However, a comprehensive theory to treat irregular wavelet frames
does not exist so far. The main difficulty consists of the highly sensitive inter-
play between geometric properties of the sequence of time-scale indices and
frame properties of the associated wavelet system.

In this research monograph, we introduce the new notion of affine density
for sequences of time-scale indices to wavelet analysis as a highly effective tool
for studying irregular wavelet frames. We present many results concerning the
structure of weighted irregular wavelet systems with finitely many generators,
adding considerably to our understanding of the relation between the geome-
try of the time-scale indices of these general wavelet systems and their frame
properties.

This book is the author’s Habilitationsschrift in mathematics at the
Justus-Liebig-Universität Gießen. It is organized as follows. The introduc-
tion presents a detailed overview of the recent developments in the study of
irregular wavelet frames and of the already quite established theory of the
relation between Beurling density and the geometry of sequences of time-
frequency indices of Gabor systems. Furthermore, it explains our main results
in an informal way. Chapter 2 reviews the terminology and notations from
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frame theory as well as from wavelet and time-frequency analysis employed
in this book.

The notion of weighted affine density, which will turn out to be a most
effective tool for studying the geometry of sequences of time-scale indices as-
sociated with weighted irregular wavelet systems, will be introduced in Chap-
ter 3. We illustrate the new notion by giving several examples. We further
compare this notion of affine density with the affine density that was inde-
pendently and simultaneously introduced by Sun and Zhou [119] and point
out the advantages of our notion.

In Chapter 4, we prove that the notion of weighted affine density leads to
very elegant necessary conditions for the existence of general wavelet frames on
the sequence of time-scale indices. The usefulness of this notion is emphasized
by its utility for the study of a rather technical-appearing hypothesis known as
the local integrability condition (LIC) of a characterization result for weighted
wavelet Parseval frames by Hernández, Labate, and Weiss [77]. In fact, we
show that under a mild regularity assumption on the analyzing wavelets, the
LIC is in fact solely a density condition.

Chapter 5 is devoted to the study of a quantitative relation between frame
bounds and affine density conditions, since the complexity of frame algorithms
is strongly related to the values of the frame bounds. A striking result here is
a fundamental relationship between the affine density of the sequence of time-
scale indices, the frame bounds, and the admissibility constant of a weighted
irregular wavelet frame with finitely many generators. Several implications of
this result are outlined, among which is the revelation of a reason for the non-
existence of a Nyquist phenomenon for wavelet systems and the uniformity
of sequences of time-scale indices associated with tight wavelet frames. In
addition, we also present the first result in which the existence of particular
wavelet frames is completely characterized by density conditions. The non-
existence of very general co-affine frames is then shown to follow as a corollary.

In Chapter 6, we show that most irregular wavelet frames (and even
wavelet Schauder bases) satisfy a so-called Homogeneous Approximation Prop-
erty (HAP). This property not only implies certain invariance properties under
time-scale shifts when approximating with wavelet frames, but is also shown
to have impact on density considerations. In addition to these main results,
our techniques introduce some very useful new tools for the study of wavelet
systems, e.g., certain Wiener amalgam spaces and — related with these ob-
jects — a particular class of analyzing wavelets.

Chapter 7 is devoted to the study of shift-invariance, i.e., invariance under
integer translations, which is a desirable feature for many applications, since
this ensures that similar structures in a signal are more easily detectable. The
oversampling theorems from wavelet analysis show that most classical affine
systems can be turned into a shift-invariant wavelet system with comparable
frame properties. Most interestingly, the process also leaves density proper-
ties invariant, and the question concerning necessity of this fact for irregular
wavelet systems arises. In this chapter we study the analog of this problem in
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time-frequency analysis and give a complete answer for irregular Gabor sys-
tems. Along the way we introduce a new notion of weighted Beurling density
and derive extensions of results from H. Landau [97], and Balan, Casazza,
Heil, and Z. Landau [7]. The results obtained in this chapter are not only
interesting by itself, but can also be regarded as an important step towards
the study of similar questions in wavelet analysis.
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Karlheinz Gröchenig, Jeffrey Hogan, Mihail Kolountzakis, Ilya Krishtal,
Demetrio Labate, Zeph Landau, Ursula Molter, Amos Ron, Zouwei Shen,

Javier Soria, Darrin Speegle, Yang Wang, and Edward Wilson for their interest
in my work and for their many useful suggestions and hints. Further thanks
go to Martin Buhmann and Christopher Heil for careful reading of parts of
this book.

I am thankful to the Institutes of Mathematics at the Universität Paderborn
and the Justus–Liebig–Universität Gießen for creating a pleasant working
atmosphere. Iwould also like to acknowledge support from theGermanResearch
Foundation (DFG) in the form of DFG Research Fellowship KU 1446/5-1. This
enabled me to spent one year in the U.S. during which a large portion of
research for this book was developed. In this regard I am also thankful to the
Department of Mathematics at Washington University in St. Louis and the
SchoolofMathematicsattheGeorgiaInstituteofTechnologyfortheirhospitality
and support during this year. I am indebted to Martin Buhmann and Tomas
Sauer for supporting this research stay and consenting to my absence from the
Institute of Mathematics at the Justus–Liebig–Universität Gießen during that
period of time.

I would like to thank the staff at Springer-Verlag Heidelberg for editorial
advise and help. I am grateful to Fernanda Laezza, Demetrio and Francesca



X Preface

Labate, and Shelby, Bernie, and Lindsay Johnson for accepting me as a family
member during my times in St. Louis and Atlanta and thereby contributing to
make these stays a wonderful experience. Finally, I wish to thank my parents
Hildegard and Norbert Kutyniok for their endless support which I can always
count on.

Gießen, June 2006 Gitta Kutyniok



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Irregular Wavelet and Gabor Frames . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Density for Gabor Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Geometry of Time-Scale Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Overview of Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Wavelet and Gabor Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Frame Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Wavelet Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Time-Frequency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Amalgam Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Weighted Affine Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 The Notion of Affine Density by Sun and Zhou . . . . . . . . . . . . . . 27
3.4 Comparison of Both Notions of Affine Density . . . . . . . . . . . . . . 32

4 Qualitative Density Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1 Existence of an Upper Frame Bound . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Existence of a Lower Frame Bound . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Examples of Wavelet Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Density of Sequences in R

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Affine Density and the Local Integrability Condition . . . . . . . . . 48

4.5.1 Amalgam Spaces on R \ {0} . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5.2 A Density Version of the Local Integrability Condition . 50
4.5.3 A Characterization of Wavelet Parseval Frames . . . . . . . 56

5 Quantitative Density Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1 Outline and Comparison with Previous Work . . . . . . . . . . . . . . . 59
5.2 Density of Product Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



XII Contents

5.3 A Fundamental Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4 The Nyquist Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.5 Sufficient Density Conditions for Wavelet Frames . . . . . . . . . . . . 76
5.6 Existence of Special Weight Functions . . . . . . . . . . . . . . . . . . . . . . 81
5.7 Co-Affine Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Homogeneous Approximation Property . . . . . . . . . . . . . . . . . . . . 87
6.1 Amalgam Spaces and the Continuous Wavelet Transform . . . . . 87
6.2 The Basic Class B0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3 The Homogeneous Approximation Property

for Wavelet Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.4 The Comparison Theorem for Wavelet Frames . . . . . . . . . . . . . . 97
6.5 Density Results for Wavelet Schauder Bases . . . . . . . . . . . . . . . . 100

7 Weighted Beurling Density and Shift-Invariant Gabor
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.1 Motivation and Outline of Chapter . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2 Weighted Beurling Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.3 Littlewood–Paley Type Inequalities . . . . . . . . . . . . . . . . . . . . . . . . 110
7.4 Equivalent Definition of Weighted Beurling Density . . . . . . . . . . 115
7.5 Beurling Density, Frame Bounds, and Gabor Generators . . . . . . 119
7.6 Shift-Invariant Gabor Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135




