
B
IB

LI
O

TH
E

Q
U

E

D
U

C

E
R

IS
T

Advanced C++
Programming Styles and Idioms

James o. Coplien
AT&T Bell Laboratories

...
~~

ADDISON-WESLEY PUBLISHING COMPANY

Reading, Massachusetts. Menlo Park, Califomia • New York. Don Mills, Ontario

Wokingham, England • Amsterdam. Bonn. Sydney. Singapore

Tokyo. Madrid. San Juan. Milan. Paris

B
IB

LI
O

TH
E

Q
U

E

D
U

C

E
R

IS
T

Library of Congress Cataloging-in-Publication Data

Coplien, James O.
Advanced C++ programming styles and idioms 1 James O. Coplien.

p. cm.
Includes bibliographical references and index.
ISBN 0-201-54855-0
1. C++ (Computer program language) I. Title.

QA 76.73.CI53C67 1992
005.26 '2--dc20

-- ---A1&T
"';~>, ,-<-'

Copyright © 1992 by AT&T Bell Telephone Labor~orporated.
Reprinted with corrections January, 1992

91-19806
CIP

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher. Printed in the
United States of America.

This book was typeset in Times, Courier, and Helvetica by the author, using a Linotronic 200P
phototypsetter and an Amdahl 5990 running the UNIX® System V Operating System.

Ada is a Registered Trademark of the United States Department of Defense. Apollo is a Registered
Trademark of Hewlett-Packard Company. Microsoft Windows is a Trademark of Microsoft, Inc.
Simula 67 is a Trademark of Simula AS. SmaUtalk-80 is a Trademark of ParcPlace Systems. Sun is
a Trademark of Sun Microsystems. MacApp is a Trademark of Apple Computer, Inc. UNIX is a
Registered Trademark of UNIX System Laboratories. X Windows, The X Window System are
Trademarks of the Massachusetts Institute of Technology. XWin is a Registered Trademark of
UNIX System Laboratories.

1 2 3 4 5 6 7 8 9 1O-HA-9594939291

B
IB

LI
O

TH
E

Q
U

E

D
U

C

E
R

IS
T

Ta Sandra,
Christopher,
Lorelei, and

Andrew Michael
with love

S.D. G.

B
IB

LI
O

TH
E

Q
U

E

D
U

C

E
R

IS
T

Obtaining Copies orthe Book's Software Examples

The software for many of the book's examples has been made available
on-line, on system research. att. corn, where copies may be retrieved
for personal, non-commercial use. The source can be retrieved by
establishing an ftp connection to the research machine, using the login
net l ib and using your electronic mail address as the password. The files
appear un der the directory c++ / idioms. Aiternatively, the software can
be retrieved through electronic mail (if you do not have ftp access) by
sending electronic mail messages of the form

send index for c++/idioms
send 2-2a.c 2-2b.c 2-4.c 2-5.c from c++/idioms

to the login netlib@research.att.com. The index file lists ail
available files.

B
IB

LI
O

TH
E

Q
U

E

D
U

C

E
R

IS
T

Preface

This book is designed to help programmers who have already leamed C++ develop
their programming expertise. To understand how programmers achieve proficiency,
we need to understand not only how people leam a new language (such as a
programming language), but also how a language is used to solve software problems
effectively.

Learning Programming Languages
Not everything you need to know about a product is described in the owner's manual.
Before the arrivai of our first chi Id, my wife and 1 were admonished by a friend that
no book, and no training, could completely prepare us for the art of parenting. We
must of course leam minimal, essential skills. But the interesting, challenging, and
rewarding aspects of raising a child go beyond this basic knowledge. For example, no
book or "owner's manual" will help you understand why your three-year-old
daughter rubs toothpaste in your one-year-old's hair, or why your children hang their
socks in the refrigerator.

The same is true of programming languages. Programming language syntax
shapes our thinking to a degree, but what we leam in the "owner's manual" about
syntax alone only gets us started. Most of what guides the structure of our programs,
and therefore of the systems we build, is the styles and idioms we adopt to express
design concepts.

Style distinguishes excellence from accomplishment. An effective parenting
style, or programming style, cornes from personal experience or by building on the

- v -

B
IB

LI
O

TH
E

Q
U

E

D
U

C

E
R

IS
T

vi Preface

experience of others. A software engineer who knows how to match a programming

language to the needs of an application, writes excellent programs. To achieve this

Ievel of expertise, we need to go beyond rules and rote, into convention and style, and

ultimately into abstractions of concept and structure. It is in that sense that this book
is '·advanced."

The ru les. conventions. and concepts of programming drive the structure of the

systems we build: They give us a model of how to build systems. A model for

problem decomposition and system composition is a paradigm, a pattern for dividing

the world into manageable parts. C++ is a multiparadigm language. C programmers

use C++ as a better C. Object-oriented advocates do everything polymorphically. In
fact. a variety of approaches is usually necessary to express the solution to a software

problem efficiently and elegantly.

Learning a programming language is much like learning a natural language.
Knowledge of basic syntax lets a programmer write simple procedures and build them

into nontrivial programs, just as someone with a vocabulary of a few hundred German

words can write a story far richer th an see-Dick-run. But mastery of language is quite

another issue. That such stories are non trivial does not make them elegant or

de mon strate fluency. Learning language syntax and basic semantics is like taking a

13-hour course in German: It prepares you for the task of ordering a bratwurst, but not

for going to Germany to make a living, and certainly not for getting a job as a German

language journalist or poet. The difference is in learning the idioms of the language.

For example, there is nothing in C itself that establishes

while (*cpl++ = *cp2++);

as a fundamental building block. but a programmer unfamiliar with this construct

would not be perceived as a fluent C programmer.
In programming, as in natural language. important idioms underly the suitability

and expressiveness of linguistic constructs even in everyday situations. Good idioms

make the application programmer's job easier, just as idioms in any language enrich

communication. Programming idioms are reusable "expressions" of programming

semantics, in the same sense that classes are reusable units of design and code.

Simple idioms (like the while loop above) are notational conveniences, but seldom

are central to program design. This book focuses on idioms that influence how the

language is used in the overall structure and implementation of a design. Such idioms
take insight and time to refine, more so th an the simple notation al idioms. The idioms

usually involve sorne intricacy and complexity, details that can be written once and
stashed away. Once established, programming language idioms can be used with

convenience and power.

... _ .. ----_ _-_ _-_ .. ,-----

B
IB

LI
O

TH
E

Q
U

E

D
U

C

E
R

IS
T

Preface vii

The Book's Approach
Assuming a background in the basic syntax of C++, this book imparts the proficiency
that expert CH programmers gain through experience by giving a feel for the styles
and idioms of the language. It shows how different styles let C++ be used for simple
data abstraction, full-fledged abstract data type implementation, and various styles of

object-oriented programming. It also explores idioms that the core of the C++
language does not directly support, such as functional and frame-based programming,
and advanced garbage collection techniques.

The Book's Structure
Rather than taking a "flat" approach to leaming the advanced features of C++ by
organizing around language features, this book looks at these increasingly powerful
abstractions from the perspective of the C++ features required to support them. Each
chapter of this book is organized around a family of such idioms. The idioms
progressively build on each other in successive chapters.

Chapter 1 provides a historical perspective on C++ idioms. It provides sorne
motivation as to why idioms came about, and varying degrees to which different
idioms can be thought of as part of the language or as outside the language.

Chapter 2 introduces the fundamental CH language building blocks: classes and
member functions. Though much of the material is basic, the chapter establishes
idioms and vocabulary that recur in later chapters. It introduces compiler type
systems, and their relationship to user-defined types and classes, from a design
perspective. lt also presents idioms that make const more useful.

Chapter 3 introduces idioms that make classes "complete" types. CH has been
evolving to automate more and more of the work of copying and initializing objects,
but programmers still need to customize assignment and default constructors for most
nontrivial classes. This chapter provides a framework for that customization. 1 call
the idioms described in this chapter canonical forms, meaning that they define
principles and standards to make the underlying mechanics of objects work. In
addition to the most commonly used canonical form, idioms are presented to apply
reference counting to new and existing classes. These are the first idioms of the book
to go beyond straightforward application of the base C++ syntax. A variation on
reference counting, counted pointers, is shown as a way to move C++ a step further
away from the machine, abandoning pointers in deference to smarter, pointer-like
objects. Lastly, the chapter looks at how to separate the creation of an object from its

B
IB

LI
O

TH
E

Q
U

E

D
U

C

E
R

IS
T

viii Preface

initialization. To someone familiar with basic C++. this might scem an unnatural

idiom: C++ tightly couples these two operations. The need to separate them arises in

the design of device drivers and in systems with mutually dependent resources.

Chapter 4 introduces inheritance; Chapter 5 adds polymorphism to inheritance to

introduce object-oriented programming. Many new C++ programmers get
"inheritance fcver." using it at evcry occasion. While it is truc that inheritance is

used mostly to support the object paradigm. it has a distinctly separate application for

software reuse. Introducing inheritance apart from polymorphism helps the reader

separate the two concepts and avoids the confusion that often arises from trying to
internalize two foreign concepts at once.

Chapter 6 approaches the constructs. styles and idioms of C ++ from the

perspectives of architecture and design. It examines what classes /Ileon at the level of

an application, high above the level of syntax. Appreciating the relationships between

the design abstractions of an application, and between the classes and objects of its

implementation, leads to systems that are robust and easily evolved. Another key to

evolution is broadening designs beyond a specific application, to coyer applications

for a whole domain; gui ding principles for domain analysis are an important part of

this chapter. The chapter contains numerous rules of thumb about appropriate use of

inheritance, an area of difficulty for inexpert C++ programmers. Readers who have

been exposed to object-oriented design will appreciate the explanation in this chapter
of how to transform the output of design to C ++ code. Encapsulation as an alternative

to inheritance. both for reuse and for polymorphism. is explored in the context of the

C++ language.
Chapter 7 explores reuse of code and designs. Four distinct code mechanisms are

explored. with particular attention devoted to the benefits and pitfalls of "inheritance

fever." Idioms are presented to significantly reduce the code volume generated by

parameterized type libraries using templates.

The remainder of the book stretches beyond native C ++ into advanced
programming idioms. Chapter X introduces exemplars, objects that take over many of

the roles of C ++ classes. Exemplars are presented as special objects that solve sorne

common development problems. such as the "virtual constructor" problem. But
exemplars also lay the groundwork for more powerful design techniques supporting

c1ass independence and independent development.
Chapter 9, which focuses on symbolic language styles, breaks with concepts many

hold fundamental to C++ programming incJuding strong typing and explicit memory
management. The idioms of this chapter are certainly outside mainstream C++

development and are reminiscent of styles found in Smalltalk and Lisp. One might
cJaim that those who want to program in Smalltalk should program in Smalltalk.

Thosc who want Smalltalk in ail of its glory should indeed use Smalltalk. However,
the fact that the styles presented in this chapter are exotic does not mean that the need

B
IB

LI
O

TH
E

Q
U

E

D
U

C

E
R

IS
T

Preface ix

that the need for them is rare or esoteric. Sometimes we want a small portion of a
system to have the ftexibility and polymorphism of symbolic languages, and in those
situations we need to step outside the bounds of the C++ philosophy while working in
the confines of the C ++ semantics and type system. This chapter regularizes such
idioms so they do not have to be created from scratch each time they are needed.

Chapter 9 also presents idioms supporting incremental run-time update.
Implementations of this idiom are necessarily dependent on many details of the target
platform. The gist of this material is to familiarize the reader with the level of
technology at which incremental loading issues must be worked. The example
presented is typical and, as such techniques go, it is neither obtuse nor trivial. The
code presented for incremental loading needs major reworking for platforms other

than Sun work stations, and it may he found altogether unsuitable to sorne
environments. None of the book's other idioms depend on this idiom, so it can be
pursued or rejected on its own merits. The goal of Chapter 9 is no! to change C++ into

Smalltalk; this cannot, and should not, be done. These idioms are less compile-time
type safe and generally less efficient than "native C++" code; what they offer is
ftexibility and an increased measure of automated memory management.

Chapter 10 covers dynamic multiple inheritance. Multiple inheritance is a
controversial C++ feature, and discussion of this dynamic variation is separated out to
avoid tainting other chapters. While static multiple inheritance as described in
Chapter 5 has value, dynamic multiple inheritance avoids problems of a combinatorial
explosion of class combinations. This approach has been found valuable in many
real-life programs including editors, CAD systems, and database managers.

The last chapter discusses objects from a high-Ievel, system view. The chapter
raises the lev el of abstraction above chunks the size of a C++ class, to larger and more
encompassing units of software architecture, organization, and administration. The
chapter puts a number of important system issues in perspective, including
scheduling, exception handling, and distributed processing. Sorne guidelines for
modularization and reuse are also discussed, tying together the concepts of Chapters 6
and 7. Included in this discussion are considerations for library structure and
maintenance.

ln Appendix A, the basic C++ concepts are compared with their C analogues.
Many readers will have already leamed these basics or can find them in introductory
texts. This material is included here for two reasons. First, it serves as a ready
reference for those occasions when you need clarification of an obscure construct
without having to go to a separate text. Second, C and C++ styles are viewed from a
design perspective, showing how to mix procedural and object-oriented code. This is
particularly important for C++ programmers working with a base of C code.

The examples in this book are based on Release 3.0 of C++, and have been tried
under Release 3 of the AT&T USL Language System on many different hardware

B
IB

LI
O

TH
E

Q
U

E

D
U

C

E
R

IS
T

x Preface

platfonns, and under sorne other C++ environments as weIl. Many of the ex amples

have been tried under GNU C++ Version 1.39.0 and Zortech C++ 2.0, though

examples using features of the 3.0 release await forthcoming releases of the se tools.

Sorne code makes use of general purpose c1ass Iibraries for maps, sets, lists, and

others. Efficient versions of such libraries are available from many vendors, and

adequately functional versions can be created from scratch for pedagogical purposes.

The skeletons, and sometimes complete bodies. of many general-purpose classes can

be gleaned from examples in the book. Key dass names are listed in the Index.

Acknowledgments

This book owes much to many friends. The original impetus for the book came from

Chris Carson at Bell Laboratories, and he if anyone is the book's godfather. 1

appreciate his initiative and support in starting this effort. The book reftccIs the

guidance of Keith Wollman, my resourceful and accommodating editor, and Helen

Wythe, the production supervisor. Lorraine Mingacci collaborated significantly with
me on Chapter 6. and discussions with her about the rest of the book have been of

immense value. The book owes much to a core te am of thorough and relentless

reviewers and contributors of ideas: Tim Bom, Margaret A. Ellis, Bill Hopkins.

Andrew Koenig, Stan Lippman, Barbara Moo, Bonnie Prokopowicz, Larry Schutte,

and Bjarne Stroustrup. Alexis Lay ton, Jim Adcock, and Mike Ackroyd offered

suggestions and insights to keep the hook focused and balanced, and 1 am deeply
grateful for their contrihutions. Many other improvements are owed to reviews hy

Miron Abramovici, Martin Carroll, Brian Kernighan, Andrew Klein, Doug McIlroy,

Dennis Mancl. Warren Montgomery, Tom Mueller, Anil Pal. Peggy Quinn, and Ben

Rovegno. More th an anyone else. Brett L. Schuchert is responsible for the

improvements in the second printing. Mary Crahb, Jean Owen, and Chris Scussel lent
their expertise on the wonders of text formalting. Credit goes 10 Corporate Desktop

Services of Glen Ellyn, Illinois, for working out the final phototypesetling bugs.

Many thanks to Judy Marxhausen for advice on specialtopics.

Much credit goes to AT &T managers for their encouragement and for their
provision of time and resources to work on the book. Thanks to Paul Zislis and Ben

Rovegno for support in the early days, and very special thanks to Warren

Montgomery, Jack Wang, and Eric Sumner, Jr., for their support, ideas, and
forbearance.

Students l'rom many of my courses have been a good source of input and feedback

on mate rials that would later be brought together in this book. Special thanks go ta

the students of the C++ courses 1 taught at AT &T Bell Laboratories, both in
Naperville, Illinois and in Columbus, Ohio, in 1989.

--_.----------_. ----------

B
IB

LI
O

TH
E

Q
U

E

D
U

C

E
R

IS
T

Preface

Contents .

Chapter 1: Introduction

Chapter 2:

1.1 C++: An Evolving Language

1.2 Handling Complexity with Idioms

1.3 Objects for the Nineties

1.4 Design and Language
References .

Data Abstraction and Abstract Data Types
2.1 Classes

2.2 Object Inversion
2.3 Constructors and Destructors
2.4 Inline Functions

- xi -

Contents

v

xi

1

2
4

5
6

7
8

11
14
19

B
IB

LI
O

TH
E

Q
U

E

D
U

C

E
R

IS
T

Contents xii

2.5 Initialization of Statie Data Members 21
2.6 Static Member Functions 21
2.7 Scoping and const 23
2.8 Initialization Ordering of Global Objects, Constants, and

Static Class Members 24
2.9 Enforcement of const for C1ass Object

Member Functions 26
2.10 Pointers to Member Functions 29
2.11 Program Organization Conventions 33
Exercises 34
References 36

Chapter 3: Con crete Data Types 37
3.1 The Orthodox Canonical Class Form 38
3.2 Scoping and Access Control 45
3.3 Overloading: Redefining the Semantics of

Operators and Functions 48
3.4 Type Conversion 54
3.5 Reference Counting: Making Variables Use

"Magic Memory" 58
3.6 Operators new and delete 72
3.7 Separating Initialization from Instantiation 79
Exercises 82
References 84

Chapter 4: Inheritance 85

4.1 Simple Inheritance 87
4.2 Scoping and Access Control

4.3 Constructors and Destructors

4.4 Class Pointer Conversion

4.5 Type Selector Fields
Exercises

References .

Chapter 5: Object-Oriented Programming
5.1 C++ Run-Time Type Support: Virtual Functions
5.2 Destructor Interaction and Virtual Destructors .

94

104

108

110

113
Ils

117
119
127

B
IB

LI
O

TH
E

Q
U

E

D
U

C

E
R

IS
T

xiii Contents

5.3 Virtual Functions and Scoping 128

5.4 Pure Virtual Functions and Abstract Base
Classes 131

5.5 Envelope and Letter Classes 133
5.6 Functors: Functions as Objects 165
5.7 Multiple Inheritance 178
5.8 The Inheri tance Canonical Forrn 189
Exercises 193
Queue Iterator Example 195
Simple Banking Account Application Classes 197
References 199

Chapter 6: Object-Oriented Design 201
6.1 Types and Classes 202
6.2 The Activities of Object-Oriented Design 207
6.3 Object-Oriented Analysis and Domain Analysis 210
6.4 Object and Class Relationships 213
6.5 Subtyping, Inheritance, and Forwarding 222
6.6 Rules of Thumb for Subtyping, Inheritance,

and Independence 244
Exercises 246
References 247

Chapter 7: Reuse and Objects 249
7.1 Ali Analogies Break Down Somewhere 251
7.2 Design Reuse 253
7.3 Four Code Reuse Mechanisms 254
7.4 Parameterized Types, or Templates 257
7.5 Private Inheritance: Does Inheritance

Support Reuse? 265
7.6 Storage Reuse 269
7.7 Interface Reuse: Variants 270
7.8 Reuse, Inheritance, and Forwarding 272
7.9 Architectural Alternatives for Source Reuse 273
7.10 Generalizations on Reuse and Objects 276
Exercises 277
References 278

B
IB

LI
O

TH
E

Q
U

E

D
U

C

E
R

IS
T

Contents xiv

Chapter 8: Programming with Exemplars in C++ 279
8.1 An Example: Employee Exemplars 282
8.2 Exemplars and Generic Constructors: The

Exemplar Community Idiom . 288
8.3 Autonomous Generic Constructors 289
8.4 Abstract Base Exemplars 293
8.5 Toward a Frame Exemplar Idiom 295
8.6 A Word About Notation 297
8.7 Exemplars and Program Administration 299
Exercises 301
Exemplar-Based Simple Parser 302
Frame-Based Exemplars 304
References 306

Chapter 9: Emulating Symbolic Language Styles in C++ 307
9.1 Incrementai C ++ Development 309
9.2 Symbolic Canonical FOnTI 311
9.3 An Example: A General Collection Class 323
9.4 Code and Idioms to Support Incrementai

Loading 328
9.5 Garbage Collection 339
9.6 Primitive Type Encapsulation 349
9.7 Multi-Methods under the Symbolic Idiom 349
Exercises 354
References 355

Chapter 10: Dynamic Multiple Inheritance 357
10.1 An Example: A Multi-Technology Window

System 359
10.2 Caveats 362

Chapter II: Systemic Issues . 365
11.1 Static System Design 366
11.2 Dynamic System Design 375
References . 390

B
IB

LI
O

TH
E

Q
U

E

D
U

C

E
R

IS
T

xv Contents

Appendix A: C in a C++ Environment

A.I Function Calls
A.2 Function Parameters

A.3 Function Prototypes

A.4 Call-by-Reference Parameters

A.S Variable N umber of Parameters

A.6 Function Pointers

A.7 The const Type Modifier
A.8 Interfacing with C Code

Exercises
References

Appendix B: Shapes Program: C++ Code .

Appendix C: Reference Return Values from Operators

Appendix 0: Why Bitwise Copy Doesn't Work
0.1 Why Member-by-Member Copy Isn't a Panacea

Appendix E: Symbolic Shapes

Appendix F: Block-Structured Programming in C++
.F.I What Is Block-Structured Programming?
F.2 Basic Building Blocks for Structured

C++ Programming .

Index

F.3 An Alternative for Blocks with Oeeply
N ested Scopes .

F.4 Implementation Considerations
Exercises

Block-Structured Video Game Code
References .

391
391
392
393
394
395

397
399
401

414
415

417

431

435

436

437

477
477

478

482

487
487
489
493

495

B
IB

LI
O

TH
E

Q
U

E

D
U

C

E
R

IS
T

