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SOME CLASSES OF TWO-PARAMETER MARTINGALES 

Summary 

Moshe ZAKAI 

Technion - Israel Institute of Technology 
Haïfa, Israel 

The mûst Datural de finît ion of a two-parameter martingale is. perhaps. the process satisfying 

E(X(S~.12)~(sI,/l)) = XCil,ll) whenever s2~sl and 12~tl' As is weil known not ail the properties of 

one-parameter martingale are înherited by two-parameter martingales under this definition and this 

leads to the introduction of other classes of martingales with the same partial ordering which arc 

either weaker (e.g., weak martingales. 1- and 2-martingales) or stronger (e.g., strong martingales, 

martingales of path independent variation) th an the natural c1ass of martingales. Strong martingales 

were introduced in [1] and shown there to play an important role in the theory of two-parameter 

martingales and stochastic integration, martingales of path inde pendent variation were defined in [21 

as follows: A continuous square integrable martingale M is said to be of path inde pendent variation 

if the quadratic variation of M, as a one-parameter martingale along every increasing path depends 

on the initial and end points of the path ooly. Il was shown in Il} thal martingales of path inde pend­

col variation on the sigma fields generated by the two-parameter Wiener processes are strong 

martingales and iL was shown Ihat in a certain special case this is actually 50. The work presented 

here was motivated by the relations between strong and path inde pendent martingales, it considcrs 

the problem of characterizing strong martingales by sam pie function properties and gives a partial 

answer to this problem. A c1ass of martingales which will be called "martingales of direction 

independent variation" ("martingales of orthogonal increments" may be more appropriatc) i~ 

introduccd as follows: Let M he a continuous square integrable martingale and lct 

Y, = IR, lalOdM( where z = Iz,.lo). a = la,.a,). ,= (f,.',). laI<) = () if ei.her 

~l < al or <Ë2 < a']. and la(~) = 1 otherwi~e 'lM is said 10 be of direction indcpendent variation if 

y 7 i~ of path independent variation for ail a in IR:. The class of direction independent martingales 

includes the c1ase; of strong martingales aod is included in the class of martingales of path indepcnd­

cnl variation. Like the class of pa th independent martingales, the class of dircction indcpt:ndent 
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; , 

mà~ingales is ~lsd' characterized by a sample function property. On the othee band, martingales of . , . . 
direction independent variation share with strong martingales severaJ important properties 50 that 

results which were obtained for strong martingales hold for direction independent martingales. ln 

particular, the requirement that M be a strong martingale in the definition of the stochastic integral 

of the second type. f J IfdMdM, ([1]) can he replaced by the requirement that M is of direction 

inde pendent variation. Finally, direction inde pendent martingales on the sigma fields generated by 

the Wiener process are strong martingales. 

References 

(1] Cairoli. R. and Walsh, J. 8., 1975. Stocbastic integrals in the plane. Acta Math., 134, pp. 
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BOUNDARY METHODS 
GENERALTHEORY 

Ismael HERRERA 

Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas 
Universidad Nacional Autonoma de Mexico 

INTRODUCTION 

Boundary methods for treating numerically partial differential 
equations associated with many problems of Science and Engineering 
are receiving attention at present. There are several procedures 
for formulating such problems. Most frequently these methods have 
been based on Maxwell Betti' s integral equation [ 11-[ 5], but 
alternative integral representations have been considered by sorne 
authors [61 -[ 91. Another approach is ta use a suitable complete 
set of solutions ta approximate arry other one. This formulation is 
frequent!y called Kupradze's fUlletional equations. lts theoretical 
foundation can be traced back ta the method of Fischer-Riesz equa­
tions [10]. and Kupradze {Il] has given a procedure for constructing 
the necessary complete system when a fundamental solution of the 
differential equation considered, is known. 

In many applications, a part of the region is treated nurnerical 
ly by means of finite elements and the sought solutions are required 
to be such that can be continued srnoothly into neighboring regions 
as solutions of given differential equations. Such kind of bound­
ary conditions will be called continuation type restrictions [12] . 
It is possible and useful ta forrnulate variational princip les which 
account for them and which only involve the region treated numeri­
cally. Again. variational principles of this type can be applied 
wh en a complete set of solutions in the neighboring regions is 
available (for an example. see [13]). 

The theory of connectivity, is an abstract theory of problems 
subjected to linear restrictions or constraints recently developed 
by the author [12] [14]-[ 191, which supplies a convenient general 
framework for the formulation of such variational princip les and 
the discussion of questions of completeness. The purpose of this 
lecture is to give a brief description of that theory and examples 
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of its applicability. Up to now it is on1y applicable to formally 

symmetric operators, but is being revised to extend it to arbitrary 

linear operators. The detailed preofs of mast of the results to be 

presented are contained in [12J and [20]. 

THE GENERAL FRAMEWORK 

In this paper linear operators such as P:D+D* will be consid­

ered, where D is a linear space with coefficients in the field F of 

real, or alternatively, complex numbers, and D* its algebraic dual. 

For every uED, the value of p(u)ED* at vEn will be denoted by 

<P(u),v>EF; the latter defines a bilinear functional and the inuer 

parenthesis will be deleted. The adjoint operator P*:D+D* always 

exists and satisfies <P*u,v>=<Pv,u>. 

There are many problems that can be cast in the following frame 

work. 

Definition 2.1. Consider P:D~D* and a subspace ICD. 

and VED, and element uED is said to be a solution of the 

with linear restrictions or constraints t when 

Given uEn 
problem 

Pu = PU and u - vEl. (2 • 1 ) 

As an example t consider the operatar P:D~D* defined by 

<Putv> = J' v V2 u dx (2. 2) 

R 

where region R is illustrated in Figure 1. There are many ways in 

which D cau be taken, because it is only required ta be a linear 

space without any further structure. For definiteness. one may 

think of D as being the Sobolev space H
S 

(R); s~2 [211. Define the 

linear subspace rCn by 

l = lu E Diu = 0, on 3R}. 

Then. problem (2.1) is Poisson' s equation 

on R 

subjected ta boundary conditions of Dirichlet type 

u = V = faR; 

Define 

A P-P* N 

on 3R . 

N = {uEDIAu=ü} 
A 

(2. 3) 

(2.4a) 

(2.4b) 

(2.5) 

ln applications the operator N introduces a classification of bound 

ary conditions; for example, when Pis given by (2.2), N={uEnlu =­

du/3n, on 3R}. 

Definition 2.2. A subspace ICD on which P is commutative and 

such that NCr is said to he regular for P. It is completely regu 

lar, if in addition 

<Au,v> o lJ vEr => uEr (2 . 6) 
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