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SOME CLASSES OF TWO-PARAMETER MARTINGALES

Moshe ZAKAI

Technion - Israel Institute of Techrology
Haifa, Israel

Summary

The most natural definition of a two-parameter martingale is, perhaps. the process satisfying
E(Xes:,lzl"g(:,.f,l) = X“l-'l’ whenever 5,25, and 1, > 1. As is well known not all the properties of
one-parameter martingale are inherited by two-parameter martingales under this definition and this
leads 10 the introduction of other classes of martingales with the same partial ordering which are
either weaker (e.g., weak martingales, 1- and 2-martingales) or stronger (e.g.., strong martingales,
martingales of path independent variation) than the natural class of martingales. Strong martingales
were introduced in [1] and shown there to play an important role in the theory of two-parameter
martingales and stochastic integration, martingales of path independent variation were defined in [2}
as follows: A continuous square integrable martingale M is said to be of path independent variation
if the guadratic variation of M, as a one¢-parameter martingale along every increasing path depends
on the initial and end points of the path only. It was shown in [1] that martingales of path independ-
ent variation on the sigma fields generated by the two-parameter Wiener processes are strong
martingales and it was shown that in a certain special case this is actually so. The work presented
here was motivated by the relations between strong and path independent martingales, it considers
the problem of characterizing strong martingales by sample function properties and gives a partial
answer to this problem. A class of martingales which will be called "martingales of direction
independent variation” (''martingales of orthogonal increments’’ may be more appropriate) is
introduced as follows: Let M be a continuous square integrable martingale and let
Y. = Jp dt8)dM wherez = (zy23). a = (ayay). £ = (§1.6), 1,(§) = 0if either

£y <ap oré, <a, and [,(§) = 1 otherwise. M is said to be of direction independent variation if
YZ

includes the class of strong martingales and is included in the class of martingales of path independ-

5
is of path independent variation for ali a in ]R;. The class of direction independent martingales

ent variation. Like the class of path independent martingales, the class of direction independent
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" martingales is alsto’ characterized by a sample function property. On the other hand, martingales of

direction indepe-'ndem variation share with strong martingales several important properties so that
results which were obtained for strong martingales hold for direction independent martingales. In
particular, the requirement that M be a strong martingale in the definition of the stochastic integral
of the second type, J [ wdMdM., ([1]) can be replaced by the requirement that M is of direction

independent variation. Finally, direction independent martingales on the sigma fields generated by

the Wiener process are strong martingales.
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BOUNDARY METHODS
GENERAL THEORY

Ismael HERRERA

Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas
Universidad Nacional Autonoma de Mexico

INTRODUCTION

Boundary methods for treating numericalily partial differential
equatiens associated with many problems of Science and Engineering
are receijving attention at present. There are several procedures
for formulating such problems. Most frequently these methods have
been based on Maxwell Betti's integral equation [1}1-[5], but
alternative integral representations have been considered by some
authors [6]-[9]. Another approach is to use a suitable complete
set of solutions to approximate any other one. This formulation is
frequently called Kupradze's functional equations. 1Its theoretical
foundation can be traced back to the method of Fischer-Riesz equa-—
ticns [10], and Kupradze [11] has given a procedure for constructing
the necessary complete system when a fundamental solution of the
differential equation considered, is known.

In many applications, a part of the region is treated numerical
ly by means of finite elements and the sought solutions are required
to be such that can be continued smeothly into neighboring regions
as solutions of given differential equations. Such kind of bound-
ary conditions will be called continuation type restrictiomns [ 12].
It is possible and useful to formulate variational principles which
account for them and which only involve the region treated numeri-
cally. Again, variational principles of this type can be applied
when a complete set of sclutions in the neighboring regions is
available (for an example, see [13]),

The theory of connectivity, is an abstract theory of problems
subjected to linear restrictions or constraints recently developed

by the author [12], [14]-[19], which supplies a convenient general
framework for the formulation of such variational principles and
the discussion of questions of completeness. The purpose of this

lecture is to give a brief description of that theory and examples
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of its applicability. Up to now it is only applicable to formally
symmetric operators, but is being revised to extend it to arbitrary
liinear operators. The detailed proofs of most of the results to be
presented are contained in {12] and [20].

THE GENERAL FRAMEWORK

In this paper linear operators such as P:D+*D%* will be consid-
ered, where D is a linear space with coefficients in the field F of
real, or alternatively, complex numbers, and D* its algebraic dual.
For every u€D, the value of P(u)ED* at vED will be denoted by
<P(u),v>EF; the latter defines a bilimnear functional and the inner
parenthesis will be deleted. The adjoint operator P*:D>D* always
exists and satisfies <P¥*u,v>=<Pv,u>.

There are many problems that can be cast in the following frame
work.

Definition 2.1. Consider P:D>D* and a subspace ICD. Given UED
and VED, and element u€D jis said to be a solution of the problem
with linear restrictiomns or constraints, when

Pu = PU and u - VEI. (2.1)
As an example, consider the operator P:D>D* defined by

<Pu,v> = J v Via dx (2.2)
R -
where region R is illustrated in Figure 1. There are many ways in
which D can be taken, because it is only required to be a linear
space without any further structure. For definiteness, one may
think of D as being the Sobolev space HS(R); s>2 [21]. Define the
linear subspace ICD by

1 ={u€Dd|u=290, con aR}. (2.3)

Then, preoblem (2.1) 1is Poisson's equation

R (2.4a)
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vZu

subjected to boundary conditions of Dirichlet type

u =V = f ; on ©OJR . (2.4%)

Define

A = P-P* ; N =N, = {u€n|Aau=01 €2.5)

roduces a classification of bound

In applications the operator N int
iven by (2.2}, N={u€D|u =

ary conditions; for example, when P is g
3u/dn, on 3R}.

Definition 2.2. A subspace ICD on which P is commutative and
such that NCI is said to be regular for P. 1t is ceompletely regu-
lar, if in addition

<Au,v> = 0 ¥ vE€I = u€l (2.6)





