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PREFACE

A philosopher once said that mathematics is nothing but
training; however, engineers have their own motivation to learn
mathematics. Because they deal with complicated practical problems
and are eager to find useful methods, engineers often face the task
of constructing reasonable models, for which familiarity with
analytical solutions of simple cases can throw Tight on the
understanding of the more complex situations.

The present text is a revised version of the author's Jecture
notes in a graduate course of applied mathematics, developed at the
INMinois Institute of Technology in the early fifties and expanded
at Purdue University. The text 1is based on the idea that
engineering students may find it more interesting to learn
mathematics through the introduction of concrete examples. In
carrying out this task, I have tried to organize the material in a
logical order that transmits the package of mathematical knowledge
and methods to the students in an efficient manner. Many problems,
utilizing the existing laws of science, can be formulated in
mathematical form; often the formulation leads to boundary-value
problems in 1linear partial differential equations, for which
solutions are then required. Thus, various standard methods of
solution are naturally introduced, employing the techniques of
Fourier series, orthogonal functions, Laplace and other transforms,
Green's functions, Riemann's conformal mapping, etc. The only pre-
vious knowledge assumed as prerequisites is advanced calculus and
elementary ordinary differential equations.

In order to enhance the students' enthusiasm for learning the
material, exercises are chosen carefully. This enables the students
not only to find their own way to solutions, but also strengthens
their practical grasp of the subject under discussion in the text.
Supplementary knowledge necessary for some treatments -- for
instance, the eiementary theory of analytic functions -- is included
in an appendix. Cauchy's residue theorem is particularly important
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in the evaluation of definite integrals of the type that appear by
employing operational methods.

The present text is not intended as a complete treatment of
boundary-value problems in linear partial differential equations. A
conscientious reader is encouraged to consult the additional
material listed in the references.

Finally, the author wishes to thank Mrs. Terri Moore for her
painstaking fine work in typing the notes in the present form.
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