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programming systems consisting of 

editors, compilers, debuggers, 

the operating system, 

the hardware. 

Data base systems consisting of 

data base managers, 

the operating system, 

the hardware. 

Application systems consisting of 

application programs, 

the operating system, 

the hardware. 

3 

There is also agreement on those aspects that are at the heart of operating systems. In 

fact, the terms nucleus or kernel are often used for the most essential functions of 
an operating system. Much of the research and development in operating systems has 

focused on resource management and the user's interface to this management. Our view 

of operating systems and the focus of this course is resource management in a very 

wide sense and the attendant user interface. We shall concentrate on the semantics of 
this interface, on internal system structure and, to some extent, on hardware archi­

tecture. 

It is interesting and instructive to look briefly at the history of modern computer 
systems. In the beginning, computers were small, simple, and free standing. Each in­

dividual could use the machine on a one-to-one basis. Generally, there has been an 
evolution from this state to the current large, complex, multiprogramming, multipro­

cessor, central systems with virtual memory and many ancillary devices and subsystems. 
The major trends have been: from one user to many users of the same system; from 

isolated users to cooperating users; from sequential batch to multiprogramming, to 

time sharing; and, in both hardware and software, an increase in the degree of con­
currency. Most importantly, we see a trend toward increased concern with the manage­

ment of non-physical resources. 

The first computer users always had the entire computer all to themselves for some 

interval of time. A user always had all the resources. Any resource management fa­

cilities provided by an operating (or programming) system were entirely for the 

user's convenience. As the user community grew it was necessary to insure efficient, 
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5 

the problem ta be solved. The notion of an abstract machine which is available ta 

each user encompasses the essence of this direction of abstraction. 

What is the current state of affairs? In a recent workshop the lecturers of this 
.course concluded that the classic problems of physical resource management and con­

currency management are weIl understood, at least ta the extent that their implement­

ation is routine and minor enough that operating systems that are satisfactory ta the 

market place are being built. IJe have chas en ta omit from this course any consider­

ation of these problems. Acceptable solutions are widely known. In fact, aIl of the 
recent textbooks on operating systems contain extensive discussions of these problems 

and their solutions. Rather we tried ta focus on problems that were less weIl under­

stood in the past - that are on or near the frontier of the field and that showed 

significant progress within the last few years. For example, none of the textbooks 

has an adequate discussion of protection, yet this is one of the most important pro­

blems in the design of new operating systems. 

Abstractions are based on models. We recognize that models are not only needed ta 

cape with complexity, but ultimately they are needed ta verify or validate the correct­
ness and other desired properties of a specific system design. :10dels for the under­

lying hardware are the foundation upon which more abstract, general models are built, 

since they give us insight into the fundamental mechanisms for the final interoret­
ation of a program that is required ta produce actual results. In addition, through 

them we can glimpse a future kind of architecture with many parallel activities, 

highly distributed. 

The abject model is the basis for the abstract resource, an abject. This very general 

model is appl icable ta bath software and hardware. It has benefitted from more recent 

developments in the study of programming languages. This benefit is not incidental. 

There, the need for careful specification of interfaces with total orotection of 
their implementation has led ta the introduction of abstract data types. Objects in 

operating systems correspond ta data types as they appear in some more recent pro­

gramming languages. The abject model seems, in some sense, ta capture fundamental pro­

perties that pervade aIl aspects of modern operating systems: protection, naming, 
binding, data, procedures, and physical devices. A model of this nature seems ta be 

necessary in arder ta realistically consider the validation of important properties 

of an operating system, su ch as correctness and reliability. 

There are a substantial number of major problems that affect the entire fiber of the 

more advanced operating systems. Most of these problems appear in the newer system 
organizations, such as, data base operating systems, distributed systems, and net­

works of computers. In these new settings the problems tend ta be an arder of magni-
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