
M. J. Flynn J. N. Gray A. K. Jones K. Lagally
H. Opderbeck G. J. Popek B. Randell
J. H. Saltzer H. R. Wiehle

An Advanced Course

Edited by
R. Bayer, R. M. Graham, and G. Seegmüller

Springer-Verlag Berlin Heidelberg New York

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

· , ,\

M. J. Flynn J. N. Gray A. K. Jones K. Lagally
H. Opderbeck G. J. Popek B. Randell
J. H. Saltzer H. R. Wiehle

Operating Systems
An Advanced Course

Edited by
R. Bayer, R. M. Graham, and G. Seegmüller

Springer-Verlag
Berlin Heidelberg New York 1979

· , ,\

M. J. Flynn J. N. Gray A. K. Jones K. Lagally
H. Opderbeck G. J. Popek B. Randell
J. H. Saltzer H. R. Wiehle

Operating Systems
An Advanced Course

Edited by
R. Bayer, R. M. Graham, and G. Seegmüller

Springer-Verlag
Berlin Heidelberg New York 1979

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

PRE F ACE

The Advanced Course on Operating Systems was held at the Technical University in

I~unich from July 28 to August 5, 1977, and was repeated from r1arch 29 to April 6,

1978. The course was organized by the Institute for Informatics of the Technical

University 1'1unich and the Leibniz Computing Center of the Bavarian Academy of

Sei ences, in co-operati on with the European Communities, sponsored by the 11i ni stry

for Research and Technology of the Federal Republic of Germany.

ARRIVÉ LE

1 6 JUIN 1980 1

CENTRE O'INF0RMATICII SCIENTifiQUE
ET TECI-INIQUE ET DE tRANSFERTS

TECI-INOLOGIQUES
B. P. 3,5 ALGER - GARE

PRE F ACE

The Advanced Course on Operating Systems was held at the Technical University in

I~unich from July 28 to August 5, 1977, and was repeated from r1arch 29 to April 6,

1978. The course was organized by the Institute for Informatics of the Technical

University 1'1unich and the Leibniz Computing Center of the Bavarian Academy of

Sei ences, in co-operati on with the European Communities, sponsored by the 11i ni stry

for Research and Technology of the Federal Republic of Germany.

ARRIVÉ LE

1 6 JUIN 1980 1

CENTRE O'INF0RMATICII SCIENTifiQUE
ET TECI-INIQUE ET DE tRANSFERTS

TECI-INOLOGIQUES
B. P. 3,5 ALGER - GARE

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

R. Bayer
R. M. Graham
J. H. Sa ltzer
G. Seegmü 11 er

A. K. Jones

t1. J. Flynn

J. H .. Saltzer

Con t e n t s

CHAPTER 1.: INTRODUCTION

I NTRODUCTl ON

CHAPTER 2.: MODElS

THE OBJECT MODEl: A CONCEPTUAl TOOl
FOR STRUCTURING SOFTWARE 7

1. The abject Madel 8
2. The abject ModeZ AppZied to Operating Systems Il
3. Mechanics of Supporting Type ModuZes 15
4. Observation 16
5. References 16

COMPUTER ORGANIZATION AND ARCHITECTURE 17

1. Machine Mapping and WeZZ Mapped Machines 19
2. Name Space - Memory Space 37
3. TraditionaZ Machine Language ProbZems

and Some FundamentaZ Concepts 52
4. Towards IdeaZ Program Representations 56
5. ParaZZeZ Processor Forms of Computing Systems 81

References 97

CHAPTER 3.: ISSUES AND RESUlTS
IN THE DESIGN OF OPERATING SYSTEMS

NAMING AND BINDING OF OBJECTS 99

A. Introduction 102
T. Names in Computer Systems 102
2. A Madel for the Use of Names 104
3. ProbZems in the Use of Names 110
4. Some ExampZes of Existing Naming Systems 114
5. The Need for Names with Different Properties 120
6. Nan of Study 123
B. An Architecture for Addressing Shared abjects 124
T. User-Dependent Bindings and MultipZe

Naming Contexts 129
2. Larger Contexts and Context SWitching 136

R. Bayer
R. M. Graham
J. H. Sa ltzer
G. Seegmü 11 er

A. K. Jones

t1. J. Flynn

J. H .. Saltzer

Con t e n t s

CHAPTER 1.: INTRODUCTION

I NTRODUCTl ON

CHAPTER 2.: MODElS

THE OBJECT MODEl: A CONCEPTUAl TOOl
FOR STRUCTURING SOFTWARE 7

1. The abject Madel 8
2. The abject ModeZ AppZied to Operating Systems Il
3. Mechanics of Supporting Type ModuZes 15
4. Observation 16
5. References 16

COMPUTER ORGANIZATION AND ARCHITECTURE 17

1. Machine Mapping and WeZZ Mapped Machines 19
2. Name Space - Memory Space 37
3. TraditionaZ Machine Language ProbZems

and Some FundamentaZ Concepts 52
4. Towards IdeaZ Program Representations 56
5. ParaZZeZ Processor Forms of Computing Systems 81

References 97

CHAPTER 3.: ISSUES AND RESUlTS
IN THE DESIGN OF OPERATING SYSTEMS

NAMING AND BINDING OF OBJECTS 99

A. Introduction 102
T. Names in Computer Systems 102
2. A Madel for the Use of Names 104
3. ProbZems in the Use of Names 110
4. Some ExampZes of Existing Naming Systems 114
5. The Need for Names with Different Properties 120
6. Nan of Study 123
B. An Architecture for Addressing Shared abjects 124
T. User-Dependent Bindings and MultipZe

Naming Contexts 129
2. Larger Contexts and Context SWitching 136

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

VII

5.2. Authority Lists 241
5.3. Capability Based Implementation 242

5.3.1. Extended Object Types 244
5.3.2. Status 248

6. Enforcing Information Control Policies 248
7. Refere'YlCes 250

K. Laga lly SYNCHRONIZATION IN A LAYERED SYSTEM 252

1. Introduction 253
2. General Concepts 253

2.1. Synchronization 253
2.2. Froeesses and Messages 255
2.3. Frocess Hierarchy 257

3. Implementation Taols 258
3.1. Semaphores 258
3.2. Conditional Critical Regions 259
3.3. Monitors 260
3.4. Path Expressions 261
3.5. Obj ect Managers 262

4. Examples 263
4.1. Readers and Writers 263

4.1.1. Semaphores 264
4.1.2. Condi tiona l Critical Regions 268
4.1.3. Monitors 269
4.1.4. Path Expressions 270
4.1.5. Object Managers 271

4.2. The Five Dining Philosophers 275
5. Conclusion 277
6. References 278

B. Randell RELIABLE COMPUTING SYSTEt1S 282

1. Introduction 283
2. Basic Concepts 286

2.1. Systems and Their Failures 286
2.2. Errors and Faults 287

3. Reliability Issues 290
3.1. Requirements 290
3.2. Types of Fault 291
3.3. Fault Intolerance and Fault ToleY'ance 293
3.4. Design Fault Tolerance 294

4. System Structure 296
4.1. Statie Structure 296
4.2. Dynamic Structure 298
4.3. Atomic Actions 299
4.4. Forms of Atomic Action 302
4.5. Levels of Abstraction 303
4.6. Faults and Structuring 306

5. Fault Tolerance Techniques 308
5.1. Protective Redundancy 308

5.1.1. Triple Modular Redundancy 309
5.2. Error Detection 311

5.2.1. Types of Check 312
5.2.2. Interface Checking 313

5.3. Faul t Treatment 314
5.4. Damage Assessment 317
5.5. Error Recovery 318

5.5.1. Backward Error RecDvery 318

VII

5.2. Authority Lists 241
5.3. Capability Based Implementation 242

5.3.1. Extended Object Types 244
5.3.2. Status 248

6. Enforcing Information Control Policies 248
7. Refere'YlCes 250

K. Laga lly SYNCHRONIZATION IN A LAYERED SYSTEM 252

1. Introduction 253
2. General Concepts 253

2.1. Synchronization 253
2.2. Froeesses and Messages 255
2.3. Frocess Hierarchy 257

3. Implementation Taols 258
3.1. Semaphores 258
3.2. Conditional Critical Regions 259
3.3. Monitors 260
3.4. Path Expressions 261
3.5. Obj ect Managers 262

4. Examples 263
4.1. Readers and Writers 263

4.1.1. Semaphores 264
4.1.2. Condi tiona l Critical Regions 268
4.1.3. Monitors 269
4.1.4. Path Expressions 270
4.1.5. Object Managers 271

4.2. The Five Dining Philosophers 275
5. Conclusion 277
6. References 278

B. Randell RELIABLE COMPUTING SYSTEt1S 282

1. Introduction 283
2. Basic Concepts 286

2.1. Systems and Their Failures 286
2.2. Errors and Faults 287

3. Reliability Issues 290
3.1. Requirements 290
3.2. Types of Fault 291
3.3. Fault Intolerance and Fault ToleY'ance 293
3.4. Design Fault Tolerance 294

4. System Structure 296
4.1. Statie Structure 296
4.2. Dynamic Structure 298
4.3. Atomic Actions 299
4.4. Forms of Atomic Action 302
4.5. Levels of Abstraction 303
4.6. Faults and Structuring 306

5. Fault Tolerance Techniques 308
5.1. Protective Redundancy 308

5.1.1. Triple Modular Redundancy 309
5.2. Error Detection 311

5.2.1. Types of Check 312
5.2.2. Interface Checking 313

5.3. Faul t Treatment 314
5.4. Damage Assessment 317
5.5. Error Recovery 318

5.5.1. Backward Error RecDvery 318

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

IX

3.5. Vie1.Js 409
3.5.1. VieWs and Update 411

3.6. Structure of Data Manager 411
3.7. A Sample Data Base Design 412
3.8. Comparison to File Access Method 414
3.9. Bib liography 414

4. Data Communications 415
4.1. Messages~ Sessions" and Relationship

to Network Manager 415
4.2. Session Management 417
4.3. Queues 417
4.4. Message Recovery 418
4.5. Response Mode Processing 418
4.5. Conversations 419
4.6. Message Mapping 419
4.7. Topics not Covered 420
4.8. Bibliography 420

5. Transaction Management 421
5.1. Transaction Scheduling 424
5.2. Distributed Transaction Management 425
5.3. The Data Management System as a Subsystem 427
5.4. Exception Handling 428
5.5. Other Components Within Transaction

Management 429
5.6. Bib liography 429
5.7. Lock Management 430

5.7.1. Pros and Cons of Concurrency 430
5.7.2. Concurrency Prob lems 431
5.7.3. Model of Consistency and Lock Protocols 431
5.7.4. Locking" Transaction Backup and System

Recovery 437
5.7.5. Lower Degrees of Consistency 438
5.7.6. Lock Granularity 438
5.7.7. Lock Management Pragmatics 446
5.7.8. Bibliography 458

5.8. Recovery Management 459
5.8.1. Model of Errors 459
5.8.2. Overview of Recovery Management 460
5.8.3. Recovery Protocols 462
5.8.4. Structure of Recovery Manager 472
5.8.5. Log Management 478
5.8.6. Examples of a Recovery Routine 480
5.8.7. Historical Note on Recovery Management 480
5.8.8. Bibliogmphy 481

H. Opderbeck Cor·1MON CARRIER PROVIDED NETWORK INTERFACES 482

1. Introduction 483
2. Protocoll Characteristics 485

2.1. Connection Establishment and Clearing 485
2.2. Error Contra l 485
2.3. Flow Contro l 486
2.4. Multiplexing 487
2.5. Synchronization 488
2.6. Transparancy 489

3. Terminal Emulation Interface 490
4. Character Concentration Interface 493
5. X. 25 Interface 495

5.1. IntY'Oduction 495
5.2. Link Access Procedure 496
5.3. Packet Level Interface 498

IX

3.5. Vie1.Js 409
3.5.1. VieWs and Update 411

3.6. Structure of Data Manager 411
3.7. A Sample Data Base Design 412
3.8. Comparison to File Access Method 414
3.9. Bib liography 414

4. Data Communications 415
4.1. Messages~ Sessions" and Relationship

to Network Manager 415
4.2. Session Management 417
4.3. Queues 417
4.4. Message Recovery 418
4.5. Response Mode Processing 418
4.5. Conversations 419
4.6. Message Mapping 419
4.7. Topics not Covered 420
4.8. Bibliography 420

5. Transaction Management 421
5.1. Transaction Scheduling 424
5.2. Distributed Transaction Management 425
5.3. The Data Management System as a Subsystem 427
5.4. Exception Handling 428
5.5. Other Components Within Transaction

Management 429
5.6. Bib liography 429
5.7. Lock Management 430

5.7.1. Pros and Cons of Concurrency 430
5.7.2. Concurrency Prob lems 431
5.7.3. Model of Consistency and Lock Protocols 431
5.7.4. Locking" Transaction Backup and System

Recovery 437
5.7.5. Lower Degrees of Consistency 438
5.7.6. Lock Granularity 438
5.7.7. Lock Management Pragmatics 446
5.7.8. Bibliography 458

5.8. Recovery Management 459
5.8.1. Model of Errors 459
5.8.2. Overview of Recovery Management 460
5.8.3. Recovery Protocols 462
5.8.4. Structure of Recovery Manager 472
5.8.5. Log Management 478
5.8.6. Examples of a Recovery Routine 480
5.8.7. Historical Note on Recovery Management 480
5.8.8. Bibliogmphy 481

H. Opderbeck Cor·1MON CARRIER PROVIDED NETWORK INTERFACES 482

1. Introduction 483
2. Protocoll Characteristics 485

2.1. Connection Establishment and Clearing 485
2.2. Error Contra l 485
2.3. Flow Contro l 486
2.4. Multiplexing 487
2.5. Synchronization 488
2.6. Transparancy 489

3. Terminal Emulation Interface 490
4. Character Concentration Interface 493
5. X. 25 Interface 495

5.1. IntY'Oduction 495
5.2. Link Access Procedure 496
5.3. Packet Level Interface 498

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

CHAPTER 1: INTRODUCTION

R. Bayer

Techni ca l Universi ty 11uni ch
11unich, Germany

R. Il. Graham

University of Ilassachusetts
Amherst, [Iass., USA

J. H. Saltzer

Massachusetts Institute of Technology
Cambridge, Hass., USA

G. Seegmüll er

Leibniz Computing Center
of the Bavarian Academy of Sciences

I~unich, Germany

CHAPTER 1: INTRODUCTION

R. Bayer

Techni ca l Universi ty 11uni ch
11unich, Germany

R. Il. Graham

University of Ilassachusetts
Amherst, [Iass., USA

J. H. Saltzer

Massachusetts Institute of Technology
Cambridge, Hass., USA

G. Seegmüll er

Leibniz Computing Center
of the Bavarian Academy of Sciences

I~unich, Germany

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

programming systems consisting of

editors, compilers, debuggers,

the operating system,

the hardware.

Data base systems consisting of

data base managers,

the operating system,

the hardware.

Application systems consisting of

application programs,

the operating system,

the hardware.

3

There is also agreement on those aspects that are at the heart of operating systems. In

fact, the terms nucleus or kernel are often used for the most essential functions of
an operating system. Much of the research and development in operating systems has

focused on resource management and the user's interface to this management. Our view

of operating systems and the focus of this course is resource management in a very

wide sense and the attendant user interface. We shall concentrate on the semantics of
this interface, on internal system structure and, to some extent, on hardware archi­

tecture.

It is interesting and instructive to look briefly at the history of modern computer
systems. In the beginning, computers were small, simple, and free standing. Each in­

dividual could use the machine on a one-to-one basis. Generally, there has been an
evolution from this state to the current large, complex, multiprogramming, multipro­

cessor, central systems with virtual memory and many ancillary devices and subsystems.
The major trends have been: from one user to many users of the same system; from

isolated users to cooperating users; from sequential batch to multiprogramming, to

time sharing; and, in both hardware and software, an increase in the degree of con­
currency. Most importantly, we see a trend toward increased concern with the manage­

ment of non-physical resources.

The first computer users always had the entire computer all to themselves for some

interval of time. A user always had all the resources. Any resource management fa­

cilities provided by an operating (or programming) system were entirely for the

user's convenience. As the user community grew it was necessary to insure efficient,

programming systems consisting of

editors, compilers, debuggers,

the operating system,

the hardware.

Data base systems consisting of

data base managers,

the operating system,

the hardware.

Application systems consisting of

application programs,

the operating system,

the hardware.

3

There is also agreement on those aspects that are at the heart of operating systems. In

fact, the terms nucleus or kernel are often used for the most essential functions of
an operating system. Much of the research and development in operating systems has

focused on resource management and the user's interface to this management. Our view

of operating systems and the focus of this course is resource management in a very

wide sense and the attendant user interface. We shall concentrate on the semantics of
this interface, on internal system structure and, to some extent, on hardware archi­

tecture.

It is interesting and instructive to look briefly at the history of modern computer
systems. In the beginning, computers were small, simple, and free standing. Each in­

dividual could use the machine on a one-to-one basis. Generally, there has been an
evolution from this state to the current large, complex, multiprogramming, multipro­

cessor, central systems with virtual memory and many ancillary devices and subsystems.
The major trends have been: from one user to many users of the same system; from

isolated users to cooperating users; from sequential batch to multiprogramming, to

time sharing; and, in both hardware and software, an increase in the degree of con­
currency. Most importantly, we see a trend toward increased concern with the manage­

ment of non-physical resources.

The first computer users always had the entire computer all to themselves for some

interval of time. A user always had all the resources. Any resource management fa­

cilities provided by an operating (or programming) system were entirely for the

user's convenience. As the user community grew it was necessary to insure efficient,

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

5

the problem ta be solved. The notion of an abstract machine which is available ta

each user encompasses the essence of this direction of abstraction.

What is the current state of affairs? In a recent workshop the lecturers of this
.course concluded that the classic problems of physical resource management and con­

currency management are weIl understood, at least ta the extent that their implement­

ation is routine and minor enough that operating systems that are satisfactory ta the

market place are being built. IJe have chas en ta omit from this course any consider­

ation of these problems. Acceptable solutions are widely known. In fact, aIl of the
recent textbooks on operating systems contain extensive discussions of these problems

and their solutions. Rather we tried ta focus on problems that were less weIl under­

stood in the past - that are on or near the frontier of the field and that showed

significant progress within the last few years. For example, none of the textbooks

has an adequate discussion of protection, yet this is one of the most important pro­

blems in the design of new operating systems.

Abstractions are based on models. We recognize that models are not only needed ta

cape with complexity, but ultimately they are needed ta verify or validate the correct­
ness and other desired properties of a specific system design. :10dels for the under­

lying hardware are the foundation upon which more abstract, general models are built,

since they give us insight into the fundamental mechanisms for the final interoret­
ation of a program that is required ta produce actual results. In addition, through

them we can glimpse a future kind of architecture with many parallel activities,

highly distributed.

The abject model is the basis for the abstract resource, an abject. This very general

model is appl icable ta bath software and hardware. It has benefitted from more recent

developments in the study of programming languages. This benefit is not incidental.

There, the need for careful specification of interfaces with total orotection of
their implementation has led ta the introduction of abstract data types. Objects in

operating systems correspond ta data types as they appear in some more recent pro­

gramming languages. The abject model seems, in some sense, ta capture fundamental pro­

perties that pervade aIl aspects of modern operating systems: protection, naming,
binding, data, procedures, and physical devices. A model of this nature seems ta be

necessary in arder ta realistically consider the validation of important properties

of an operating system, su ch as correctness and reliability.

There are a substantial number of major problems that affect the entire fiber of the

more advanced operating systems. Most of these problems appear in the newer system
organizations, such as, data base operating systems, distributed systems, and net­

works of computers. In these new settings the problems tend ta be an arder of magni-

5

the problem ta be solved. The notion of an abstract machine which is available ta

each user encompasses the essence of this direction of abstraction.

What is the current state of affairs? In a recent workshop the lecturers of this
.course concluded that the classic problems of physical resource management and con­

currency management are weIl understood, at least ta the extent that their implement­

ation is routine and minor enough that operating systems that are satisfactory ta the

market place are being built. IJe have chas en ta omit from this course any consider­

ation of these problems. Acceptable solutions are widely known. In fact, aIl of the
recent textbooks on operating systems contain extensive discussions of these problems

and their solutions. Rather we tried ta focus on problems that were less weIl under­

stood in the past - that are on or near the frontier of the field and that showed

significant progress within the last few years. For example, none of the textbooks

has an adequate discussion of protection, yet this is one of the most important pro­

blems in the design of new operating systems.

Abstractions are based on models. We recognize that models are not only needed ta

cape with complexity, but ultimately they are needed ta verify or validate the correct­
ness and other desired properties of a specific system design. :10dels for the under­

lying hardware are the foundation upon which more abstract, general models are built,

since they give us insight into the fundamental mechanisms for the final interoret­
ation of a program that is required ta produce actual results. In addition, through

them we can glimpse a future kind of architecture with many parallel activities,

highly distributed.

The abject model is the basis for the abstract resource, an abject. This very general

model is appl icable ta bath software and hardware. It has benefitted from more recent

developments in the study of programming languages. This benefit is not incidental.

There, the need for careful specification of interfaces with total orotection of
their implementation has led ta the introduction of abstract data types. Objects in

operating systems correspond ta data types as they appear in some more recent pro­

gramming languages. The abject model seems, in some sense, ta capture fundamental pro­

perties that pervade aIl aspects of modern operating systems: protection, naming,
binding, data, procedures, and physical devices. A model of this nature seems ta be

necessary in arder ta realistically consider the validation of important properties

of an operating system, su ch as correctness and reliability.

There are a substantial number of major problems that affect the entire fiber of the

more advanced operating systems. Most of these problems appear in the newer system
organizations, such as, data base operating systems, distributed systems, and net­

works of computers. In these new settings the problems tend ta be an arder of magni-

B
IB

LI
O

TH
E

Q
U

E

 D
U

 C

E
R

IS
T

