Georges Kamarinos Nadine Guillemot Bernard Courtois

Editors

Proceedings of the European Workshop

J CERIST

MICROELECTRONICS EDUCATION

World Scientific

Proceedings of the European Workshop MICROELECTRONICS EDUCATION

t:

Proceedings of the European Workshop MICROELECTRONICS EDUCATION

i :

Grenoble, France 5-6 Feb 1996

Editors

Georges Kamarinos LPCS, France

Nadine Guillemot

Bernard Courtois TIMA, France

Published by

World Scientific Publishing Co. Ptc. Ltd.
P O Box 128, Farrer Road, Singapore 912805
USA office: Suite 1B, 1060 Main Street, River Edge, NJ 07661
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in Publication Data A catalogue record for this book is available from the British Library.

1134

MICROELECTRONICS EDUCATION Proceedings of the European Workshop

Copyright © 1996 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 981-02-2653-5

PREFACE

1

This volume contains the extended abstracts of the invited and contributed papers and posters presented at the "1st European Workshop on Microelectronics Education" (1st EWME), held at the picturesque village of French Alps, Villard-de-Lans, during two days (5 and 6 February 1996).

After two days of intensive work and discussions, all participants, unanimously, considered that the meeting was a large success.

More than 150 University researchers and teachers as well as R-D and industrial engineers coming from 23 countries (Europe, Japan, and Brazil) have shared their experiences.

The National policies and the educational modules of 15 University centers from 10 different countries have been presented. The International Cooperation usina the available multimedia has been discussed Pedagogical problems concerning the teaching of "classical" microelectronics (technology, devices and CAD) as well as those concerning the sensors, microsystems and the advanced materials have been examined. Besides more general pedagogical views relative to the extended use of models, simulation and CAD have been exposed. The success of the workshop is due to the fact that microelectronics is, now, at a turning point :

- (i) It is a mature technology : by the year 2000 electronics will be probably in the heart of the largest industry of the world ; in this progress the silicon microelectronics will continue to keep a dominant place covering 99% of the semiconductor market [1].
- (ii) It is also clear that the existing technology has to get rid of any empirism and has to connect more with advanced scientific knowledge; the "scientific fabrication" of the next IC generation is a new and large challenge [2, 3].
- (iii) The capital investment for an industrial facility for the fabrication of ULSI IC's is estimated being higher than 10 billions of US dollars. It may happen that the gigantic cost of an IC's fabrication facility will be the real limitation and will slow down the exponential evolution rate of silicon technology [4].

Then the only progress will be possible by the advances in IC's design and the emergence of new circuit architectures.

(iv) At any meeting it is usual, for scientists, to have conversation which drift to the funding crisis and its faithful companion, the job shortage. This is not the case, now, for microelectronics. Indeed, the microelectronics industry being in an expansion phase [5], it is expected that 700 000 skilled employees should be hired over a period of five years and more than one million must be trained during the same period [6].

So, the present turning point in microelectronics is due to the conjunction of the industrial (i), the scientific and technological (ii), the financial (iii) and the educational needs (iv).

How, when and what in microelectronics knowledge has to be transferred to future engineers, or simple employees, by education is an important question which has to be approached by a scientific method.

The teaching activity and the pedagogical methods have to be innovative, highly productive and very efficient.

We hope that the 1st EWME has contributed to "shape" a scientific community which will not only share its experience in teaching but which will, also, initiate new pedagogical ideas and new collective efforts.

References

- B. Courtois :
 "CAD and testing of IC's and systems :"Where are we going ?"
 Journ.Microelectr.Syst.Integr. <u>2</u>, n° 3, p. 139 (1994).
- G. Kamarinos :
 "For a new educational strategy for ULSI microelectronics". Mat.Sc.Eng. <u>A 199</u>, p. 45 (1995).
- [3] G. Kamarinos, P. Félix : "How will physics be involved in silicon microelectronics". Review article Journ.of Phys. D : Appl.Phys. (in press) (1996).
- [4] D. Bois :
 "Perspectives techniques et économiques des composants intégrés". L'Onde électrique, <u>76</u>, n° 6, p. 4 (1993).

[5] Ph. Le Coeur : "L'industrie européenne des semiconducteurs a redressé ses comptes". Le Monde, 30 janvier 1996, p. 15. [6] J.P. Dauvin (SGS-Thomson) :

1

"Perspectives économiques des semiconducteurs". Colloque Micro-Electronique et Microtechnologies". Grenoble 19 January 1996, (organized by LETI/CEA).

Grenoble, 21 February 1996

Nadine GUILLEMOT Vice-President

Bernard COURTOIS Vice-President

BIBLIOTHEQUE DU CERIST

CONTENTS

ŧ

Preface	v
MICROELECTRONICS EDUCATION	
The French Microelectronics Training Network J. L. Aucouturier, O. Bonnaud, P. Dandrel and M. Robert	3
Education in Microelectronics at EPFL P. Letourneau, P. A. Clivaz, T. Hessler, M. Dutoit and M. Ilegems	9
A Report from a Japanese Microelectronics Company Concerning Education Y Yano	13
An Experience in the Dissemination of Microelectronics in Latin America C. I. Z. Mammana, S. H. M. Oliveira and A. A. Quijano	17
Microelectronics Education at Fachhochschulen in Baden-Wüerttemberg A. Führer, D. Jansen, G. Kampe, M. Rieger, W. H. Ritzert and K. H. Schmidt	21
Integration of Education and Industrial Projects at the Hogeschool Enschede B. G. M. Olde Hampsink, A. P. G. Lubbers and F. J. F. M. Witteveen	25
MULTIMEDIA TECHNIQUES FOR MICROELECTRONICS EDUCATI	ON
Teaching in Half the Time: How the EDEC Consortium Intends to Use Computer Based Learning Techniques for Electronics Design D. J. Kinniment	31
Hypertext Self Study Material in Solid State Electronics HE. Nilsson, U. Sannemo, T. Zhang and C. S. Petersson	35
A World Wide Web Based System for VLSI Design Training L. T. Walczowski and W. A. J. Waller	39
The Hypermedia VHDL Learning System — Description and First Experiences H. Dicken, M. Koch and D. Tavangarian	43

Computer Aided Self-Training in Advanced Microelectronics Fields: SOI Devices	47	
A. Rusu, M. D. Steriu, D. Munteanu, A. M. Ionescu and M. T. Janot-Giorgetti		
MICROSENSORS AND MICROSYSTEMS		
Training in Microsystems M. Ecabert	53	
Education Concepts on ASIC Design for Microsensors W. Bonath, C. Klein and T. Liebetrau	57	
Teaching Design of Integrated Microsystems at the Technical University of LODZ	61	
M. Turowski and A. Napieralski	01	
A Simple Bulk Micromachining Technique Using NMOS (IC) Processes: Microcantilever Fabrication A. Ionescu, N. Mathieu and J. M. Terrot	65	
CONTINUING EDUCATION AND TECHNOLOGY TRANSFER		
Training to SME's "Industrial Innovations" Capabilities: New Concepts and Tools are Needed <i>R. Castagné and A. Bert</i>	71	
Italian Technology Transfer Projects in Microelectronics V. A. Monaco	75	
Co Design Teaching Experiences with Simple and Cheap Tools P. Vernel	79	
DESIGN AND TEST		
Developments at CMP Service: From Microelectronics to Microsystems B. Courtois, J. M. Karam and J. M. Paret	-85	
A Methodology for the Education of Digital CMOS Integrated Circuits Desig S. Fernández-Gómez, J. J. Rodríguez-Andina, E. Soto and J. Fariña	gn 92	

	xi
A Portable Layout Approach Well Adapted to Education A. Greiner, F. Pétrot and F. Wajsbürt	97
 Design Education in Microelectronics at the University of Stuttgart: VHDL — and Synthesis Based Design of a 32-bit RISC Processor in a Four Months Course M. Gumm, M. Bühler and U. Baitinger 	102
Undergraduate Analog CMOS Integrated Circuit Design Teaching N. Barniol, F. Serra-Graells and J. Carrabina	106
DEVICES AND TECHNOLOGY	
Teaching Physics for Future Devices P. Lugli and A. D'Amico	113
Novel Ultradense Packaging Approaches and Curriculum Requirements in View of Highly Efficient Microelectronics <i>H. L. Hartnagel</i>	117
Fabrication, Simulation and Characterization of MOS Devices P. Morfouli, N. Mathieu and A. M. Ionescu	122
Semiconductor Teaching Chips — A Tool for Microelectronics Technology Education L. I. Haworth, A. Ross, A. Gundlach and J. M. Robertson	126
Including Particle Device Modelling in Device Tutorial E. Sicard, S. Galdin and F-X. Musalem	130
MICROELECTRONICS EDUCATION	
French-Speaking Module in Microelectronics: An Example of an International Cooperation in Education Between a French Microelectronics Center and a Roumanian Engineer Faculty O. Bonnaud, C. Diaconescu, E. Vesa and E. Tom	137
Microelectronics CAD Education and Researches: Where is Ukraine Going? S. Y. Yurish and V. B. Dudykevych	141

11

Education Environment for Electronics and Microsystems M. Ajaots, M. Min, T. Rang and R. Ubar	145
The Spiral Approach in Teaching: A Matter of Being Understood H. Träff	149
Questions a Propos de la Simulation J. Brini	154
Training of Bachelor on Microelectronics in the Vladimir State Technical University M. V. Rufitsky	158
Stimulating Effects of the TEMPUS Programme on the Level of Microelectronics in the Czech and Slovak Republics I. Adamcík, J. Brzobohaty and M. Vesely	162
Graduate Courses at Ecole Centrale de Lyon in Integrated Circuits Design Actual Program and Trends F. Gaffiot, G. Jacquemod, J. P. Zaygel and M. Le Helley	166
A Final Year Undergraduate Course in IC Design for Non-Specialists P. L. Jones and E. W. Hill	170
Microelectronics Course with Practical Applications F. Nouvel and J. Citerne	174
Microelectronics Education: A Learning by Doing Approach D. Gómez, A. Quirós, J. M. Barrientos and A. Morgado	178
DESIGN AND TEST	
Low-Cost CAD System for Teaching Digital Test R. Ubar, J. Raik, P. Paomets, E. Ivosh, G. Jervan and A. Markus	185
The Introduction of VHDL in Digital Design Practical Courses C. Douillard, P. Ferry, P. Adde and M. Jézéquel	189
Feasibility of DSCC Encoding ASICs A. Dandache, T. Vallino, F. Monteiro, B. Lepley	193

xii

BIBLIOTHEQUE DU CERIST

A System Level Teaching Environment for Designing the 32 bit DLX Microprocessor P. Bazargan-Sabet, J. Dunoyer, A. Greiner and M. M. Rosset-Louërat	197
Integrated Circuits Made by Supelec Students for the Celebration of the School Centennial Ph. Benabes, A. Gauthier and R. Kielbasa	201
 Design and Characterization of Analogue Integrated Circuits — Application to an OPA J. Tomas, J. B. Begueret, Y. Deval, J. P. Dom and J. L. Aucouturier 	205
Logical Design with VHDL as a Synthesis Tool for PLDs J. Weber, M. Meaudre and S. Megherbi	209
A Low-Cost Digital Tester Based on Boundary-Scan Techniques A. Guettaf, O. Florent, E. Rejouan and A. Derieux	213
Use of VHDL-Based Design Methodology and 'AHILES' System for Education in Belarus A. A. Prihozhy	217
JISI — An Educational Project for Microelectronics A. Ferreira, E. Sicard, J. L. Noullet, F. Caignet and S. Delmas	221
FPGA as Educational ASIC T. Vassileva and V. Tchoumatchenko	225
IC Testing Course Performed in Industrial and Research Environment T. Zimmer, F. Verdier and Y. Danto	229
Hardware Digital Implementation for a Neural Processor A. Skaf, J. Velez and A. B. Ferrari	233
Un générateur de séquence portable pour le test des ASICs d'enseignement B. Arion, Y. Ni, M. C. Vasiliu	238
CMOS Analogue ASICs Full Custom for Nuclear Physics Applications G. V. Russo, C. Caliglore, D. Lo Presti, S. Panebianco, N. Randazzo, M. Russo, S. Aiello, P. Belluomo, S. Reito, D. Flandre and A. Viviani	243

BIBLIOTHEQUE DU CERIST

ŧ:

xiii

•

DEVICES AND TECHNOLOGY

Introduction of Semiconductor Devices into Communication Systems: Teaching Examples J. M. Dumas, P. Vigier, C. Berthelemot, J. P. Cances	253
An Education-Oriented Characterization of MOS Integrated Circuit Technology N. Mathieu, A. M. Ionescu and P. Morfouli	257
Some Aspects of Laboratory Exercises on Semiconductor Device Fabrication Technology V. Benda and J. Fucíková	261
Introducting Digital Gates in the Basic MOS Fabrication Training J. L. Noullet, P. F. Calmon, G. Pierrel and P. Bourdeu d'Aguerre	265
Teaching "Dielectrics for Microelectronics Application" Y. M. Poplavko and Y. I. Yakimenko	269
The Richness of the Fermi Energy Level Concept: A Pedagogical and Productive Approach <i>G. Kamarinos</i>	273
Realisation in Clean Room and Electrical Characterisation of MOSFETs with Different Gate Insulation Processes F. Raoult, L. Pichon, K. Mourgues, J. Pinel, O. Bonnaud and H. Lhermite	277
DEVSIM — A Useful Educational Tool for the Design and Analysis of Semiconductor Devices D. Donoval	281
MICROWAVE CIRCUITS AND OTHERS	
Training Examples for MMIC's Design J. M. Floch	287

Conception et technologie des Circuits Intégnés Monolithiques Micro-ondes (MMIC) sur GaAs* S. Megherbi, P. Crozat, JC. Hénaux and G. Vernet	291
and J. Peire Training on Microwaves and Photonics at LHOG/INPF	299
N. Corrao, B. Cabon, F. Ndagijimana, A. Vilcot, P. Benech, I. Schanen Duport, M. Bouthinon and C. Gaubert	

ŧ.