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Preface

Over the jast two or three decades, elliptic curves have been playing an in-
creasingly imnportant role both in number theory and in related fields such as
cryptography. For exaimnple, in the 1980s, <lliptic curves started being used
in cryptography and clliptic curve techniques were developed for factorization
and primality testing. In the 1980s and 1990s, clliptic curves played an iimpor-
tant role in the proof of Fermat's Last Theorem. The goal of the present book
is to develop the theory of elliptic curves assuming only modest backgrounds
in elementary number theory and in groups and fields, approximately what
would be covered in a strong undergraduate or beginning graduate abstract
algebra course. In particular, we do not assume the reader has scen any al-
schraic geometry. Except for a few isolated sections, which can be omitted
if desired, we do not asswune the reader knows Galois theory, We implicitly
use Galois theory for finite fields, but in this case everything can be done
explicitly in terms of the Frobenius map so the general theory is not needed.
The relevant facts are explained in an appendix.

The book provides an introduction to borh the cryptographic side and the
number theoretic side of elliptic curves. For this reason, we treat elliptic
curves over finite fields carly in the book, namely in Chapter 4. This immedi-
ately leads into the discrete logarithin problem and cryptography in Chapters
5. 6, and 7. The reader only interested in cryptography can subsequently
skip to Chapters 10 and 11, where complex multiplication and the Weil and
Tate-Lichtenbaum pairings are discussed. But surely anyone who becomes an
expert in eryptographic applications will have a little curiosity as to how ellip-
tic curves are used in number theory. Similarly, a nou-applications oriented
reader could skip Chapters 5, 6, and 7 and jump straight into the number
theory in Chapters 8 and bevond. Bul the cryptographic applications are
interesting and provide examples for how the theory can be used.

There are several fine books on elliptic curves already in the literature. This
boak in no way is intended to replace Silverman’s excellent two volumes [90)],
[92], which are the standard references for the number theoretic aspects of
elliptic curves. Instead, the present book covers some of the same material,
plus applications to cryplography, from o more clementary viewpoint. [t is
hoped that readers of this book will subsequently find Silverman’s books more
accessible and will appreciate their slightly more advanced approach. The
hooks by Knapp [47] and Koblitz [49] should be consulted for an approach to
the arithmetic of elliptic curves that is more analytic than either this hook or
[90]. For the cryptographic aspects of elliptic curves, there is the recent hook of
Blake et al. [7], which gives more details on several algorithins than the present
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hook, but contains fow prools. It showld be consulted by serions students of
elliptic curve ceyplography. We hope that (he present book provides o good
introduction Lo and explanation of the mathematics used in that hook. The
28], Koblitz [B1]. [505 aned Menezes [64] also treat elliptic
curves from o ervplographic viewpolnt amd can he profitably consulted.
Notation. The symbols Z. F, Q. R, C denote the integers, the fintte
ticld with ¢ clements, the vationals, the reals, and the cowplex mnbers,
respectively. We have nsed Z,, {rather than Z/nZ) 1o denote the integers

books by Enge

inod 1. However, when pois a prime and we are working with Z,, as a field,
rather than as o group or ring, we nse Fy, inorder to remain consistent with
the notation ¥, Note that Z,
chioice was made for typographic reasons since the integers mod poare nsed
Hroguenily, while asvmbol for the pradic integers is nsed ouly ina few examples
in Chapter 13 (where we ase Q). The peadic rationals are denoted by Q.
IR s o field, then K denotes a algebraic elosnure of K1/ s aring. then

does ol denote the jeadic integers. This

1 denotes the invertible clements of /i) When A s a Held. K s therefore
the nltiplicative group of nonzero clements of A0 Thronghout the book,
the letiers A and 2 are generally used to denote a feld and an elliptic carve
{exeepl in Chapter 9, where A s used o few times for an elliptic integral).
Acknowledgments. '1e author thanks Bob Stern of CRC Pross for
sugeesting that this book e written and for his encouragement. and the
cditorial staf ot CRE Press lor ther help during the preparation of the book.
Ed Eikeuberg, Jin Owings. Susan Schimoyer, Brian Conrad, and San Wagstadl
macde many sugeestions that greatly improved the manuseript. OF cowrse.
there is always room for more nprovernent. Please send suggestions and
corrections to the author (lewaatlhonnd.edu). Corrections will he listed on
the web site Tor the book (www matb anededu/ ~lew fellipticenrves. htmil ).
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