Advanced Series in Electrical and Computer Engineering - Vol. 4

Introduction to Engineering Electromagnetic Fields

Korada Umashankar

World Scientific

Introduction to Engineering Electromagnetic Fields

ADVANCED SERIES IN ELECTRICAL AND COMPUTER ENGINEERING

Editor: W. K. Chen

Published

Volume 1 Broadband Matching: Theory and Implementations (Second edition) by W. K. Chen

Forthcoming

Volume 2	Active Network and Feedback Amplifiers (Second edition) by W. K. Chen
Volume 3	Linear Networks and Systems: Algorithms and Computer Aided Implementations (Second edition) by W. K. Chen
Volume 5	Applied Graph Theory: Graphs and Electrical Networks (Second edition) <i>by W. K. Chen</i>
Volume 6	Introductory Signal Processing by R. Priemer

1512649

Advanced Series in Electrical and Computer Engineering - Vol. 4

Introduction to Engineering Electromagnetic Fields

Korada Umashankar

Department of Electrical Engineering University of Illinois at Chicago Chicago, Illinois USA

Published by

World Scientific Publishing Co. Pte. Ltd., P O Box 128, Farrer Road, Singapore 9128 USA office: 687 Hartwell Street, Teaneck, NJ 07666 UK office: 73 Lynton Mead, Totteridge, London N20 8DH

Library of Congress Cataloging-in-Publication data is available.

INTRODUCTION TO ENGINEERING ELECTROMAGNETIC FIELDS

Copyright @ 1989 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.

ISBN 9971-50-921-0 9971-50-922-9 pbk

Printed in Singapore by JBW Printers & Binders Pte. Ltd.

To my wife Prabha

and my sons Sachidananda and Sundaresh

BIBLIOTHEQUE DU CERIST

Preface

The Introduction to Engineering Electromagnetic Fields is principally intended as the required text book for the senior level undergraduate electrical engineering students and for the preparatory level graduate engineering students. Even the researchers in the area of analytical and computational electromagnetics find this text book useful as a quick reference guide for the basic analytical expressions in engineering electromagnetic fields and applications. The author has taught electromagnetics and engineering applications for past eighteen years. This test book is the collection of series of class lecture notes and feedback from students' interaction on the foundation to engineering electromagnetic topics which have been presented to the undergraduate and preparatory graduate level electrical engineering students. It is generally assumed that the reader knows fundamental differential calculus, integral calculus and in particular solution to simple differential equations. Vector calculus is generally recommended. The undergraduate students who have already taken introductory vector calculus will find this text book easy to understand.

The text book contains seventeen chapters. Each chapter has been prepared with self contained material keeping in mind that the cross referencing of the subject material should be as far as minimum. The first chapter presents a brief discussion on the vector calculus. In fact, attempt has been made to introduce vector calculus as and when necessary throughout text book. This allows the student to pickup the concept of electric and magnetic fields in an elegant manner. Eventually, in order to understand the complete subject material, it is necessary to know all about vectors and their mathematical theorems which are also indirectly discussed in this book in terms of the electromagnetic fields.

The book is written to introduce partially static and then partially dynamic electromagnetic fields. The chapters from two to six discuss the fundamentals of electrostatic fields. The Coulomb's law, the Gauss's law are introduced here. Similarly, the chapters from seven to eleven discuss the fundamentals of magnetostatic fields. The Biot-Savart's law, the Gauss's law and the Ampere's law are introduced here. There exists one to one correspondence between the study of electrostatic fields and magnetostatic fields. The Poisson's and Laplace's equations are also discussed with simple examples about the static fields. The chapters twelve to

fifteen basically discuss the dynamic electric and magnetic fields. Based on the Faraday's law and the Ampere's law, the classical Maxwell's equations are discussed in time domain in the chapter twelve and correspondingly in frequency domain in the chapter fourteen. The solution to the time domain Maxwell's equations and wave equations is considered in the chapter thirteen. The corresponding solution to the frequency domain Maxwell's equations and Helmholtz equations is considered in the chapter fifteen. Emphasis is primarily given to the study of electromagnetic fields in the rectangular coordinate system. In order to excite the reader's interest and to show basic engineering concepts, the last two chapters expose simple applications of the Maxwell's equations to the problems of electromagnetic field radiation in a free space medium and also propagation of the electromagnetic fields in a guided wave structure.

The text book is self contained with discussion based on simple examples which are BIBLIOTHEQUE DU CERIST field calculations. University of Illinois at Chicago Chicago, Illinois 60680, USA February 24, 1989

sufficient to pick up general concepts of the electromagnetic field theory. If desired the students may refer to the list of references given in the bibliography which are useful for further reading. The area of electromagnetic fields and engineering applications is high demanding in the various related engineering fields dealing with state-of-the-art modern technological developments which require knowledge of the field theory. The recent advancements in the area of numerical methods and computer technology is pushing gradually the electromagnetic field studies beyond its present limits. It is highly recommended that the undergraduate students start studying the field theory with problem solving based on computers and graphical display of

The author wishes to express his sincere appreciation to Dr. Wai-Kai Chen, Professor and Head of the Department of Electrical Engineering and Computer Science, University of Illinois at Chicago for the encouragement received to write this text book and to Prof. K.K.Phua of the World Scientific for publishing this text book among their series in electrical and computer engineering. The author also wishes to acknowledge good efforts of Mr. Sainath Nimmagadda, Ph.D. graduate student in the Department of Electrical Engineering and Computer Science for proof reading and verifying all the mathematical developments in the manuscript.

> Korada Renu Umashankar Author

TABLE OF CONTENTS

CHAPTER 1: VECTOR CALCULUS

1.0	INTRODUCTION	1
1.1	COORDINATE SYSTEMS	2
1.2	ADDITION AND SUBTRACTION OF VECTORS	6
1.3	PRODUCT OF VECTORS	7
1.4	VECTOR IDENTITIES	11
1.5	SCALAR AND VECTOR FUNCTIONS	12
1.6	THE DIFFERENTIAL OPERATOR	15
1.7	REPRESENTATION OF VECTORS IN OTHER COORDINATES	19
1.8	INTEGRALS OF SCALAR AND VECTOR FUNCTIONS	24
1.9	DIFFERENTIAL EXPRESSIONS IN OTHER COORDINATES	27
PB	OBI EMS	29

PAGE

CHAPTER 2: STATIC ELECTRIC FIELD

2.0	INTRODUCTION	33
2.1	STATIC ELECTRIC CHARGES	35
2.2	COULOMB'S LAW	37

	:
CERIST	CHAPT
DU	:
QUE	CHAPT
ш	
E	
5	4
\leq	
B	
Ξ	

2.3	CHARGE DENSITY DISTRIBUTIONS	41
2.4	STATIC ELECTRIC FIELD	47
2.5	ELECTRIC FIELD- CONTINUOUS LINE CHARGE DISTRIBUTION	51
2.6	ELECTRIC FIELD- CONTINUOUS SURFACE CHARGE DISTRIBUTION	58
2.7	ELECTRIC FIELD- CONTINUOUS VOLUME CHARGE DISTRIBUTION	65
2.8	SUMMARY	67
PRC	DBLEMS	69

PAGE

CHAPTER 3: ELECTRIC FLUX DENSITY

3.0 INTRODUCTION	72
3.1 GAUSS'S LAW FOR ELECTRIC FIELD	75
3.2 DIVERGENCE OF ELECTRIC FIELD	84
3.3 SUMMARY	92
PROBLEMS	93

CHAPTER 4: ELECTROSTATIC POTENTIAL

4.0 INTRODUCTION	95
4.1 WORK DONE AND ELECTRIC SCALAR POTENTIAL	96
4.2 STATIC ELECTRIC POTENTIAL IN TERMS OF SOURCES	98
4.3 ELECTRIC POTENTIAL- CONTINUOUS LINE CHARGE DISTRIBUTION	102
4.4 ELECTRIC POTENTIAL- CONTINUOUS SURFACE CHARGE DISTRIBUTION	109
4.5 ELECTRIC POTENTIAL- CONTINUOUS VOLUME CHARGE DISTRIBUTION	114
4.6 GRADIENT OF ELECTRIC SCALAR POTENTIAL	116
4.7 POISSON AND LAPLACE EQUATIONS	119
4.8 ELECTROSTATIC ENERGY	121
4.9 SUMMARY	128
PROBLEMS	130

CHAPTER 5: DIELECTRIC MATERIAL MEDIUM

5.0 INTRODUCTION	133
5.1 ELECTRIC POLARIZATION	134

	PAGE
5.2 COULOMB'S LAW IN DIELECTRIC MEDIUM	144
5.3 ELECTRIC FLUX DENSITY	153
5.4 ELECTRIC SCALAR POTENTIAL	158
5.5 ENERGY STORED IN DIELECTRIC MEDIUM	164
5.6 CONDUCTING MATERIAL	166
5.7 BOUNDARY CONDITIONS	171
5.8 SUMMARY	179
PROBLEMS	181

CHAPTER 6: SOLUTION TO ELECTROSTATIC FIELD PROBLEMS

6.0 lt	NTRODUCTION	183
6.1 C	DNE DIMENSIONAL PROBLEMS	186
6.2 C	CAPACITANCE OF PARALLEL PLATES	195
6.3 C	CAPACITANCE OF COAXIAL CYLINDERS	198
6.4 C	CAPACITANCE OF TWO CONCENTRIC SPHERES	200
6.5 T	WO DIMENSIONAL PROBLEMS	202
6.6 T	WO MEDIA FIELD PROBLEMS	210
6.7 E	LECTROSTATIC THREE DIMENSIONAL FIELD PROBLEMS	216
PROE	BLEMS	226

CHAPTER 7: STATIC MAGNETIC FIELD

7.0 INTRODUCTION	228
7.1 ELECTRIC CURRENT	229
7.2 ELECTRIC CURRENT DENSITY DISTRIBUTIONS	234
7.3 CONTINUITY EQUATION	239
7.4 BIOT-SAVART LAW	242
7.5 CONTINUOUS LINE CURRENT DISTRIBUTION	248
7.6 CONTINUOUS SURFACE CURRENT DISTRIBUTION	256
7.7 MAGNETIC FIELD- CONTINUOUS VOLUME CURRENT DISTRIBUTION	264
7.8 SUMMARY	266
PROBLEMS	268

PAGE

CHAPTER 8: MAGNETIC FLUX DENSITY

8.0 INTRODUCTION	270
8.1 GAUSS'S LAW FOR MAGNETIC FIELD	273
8.2 DIVERGENCE OF MAGNETIC FIELD	275
8.3 AMPERE'S LAW	279
8.4 CURL OF MAGNETIC FIELD	289
8.5 SUMMARY	302
PROBLEMS	303

CHAPTER 9: MAGNETIC VECTOR POTENTIAL

9.0 INTRODUCTION	305
9.1 WORK DONE AND MAGNETIC SCALAR POTENTIAL	306
9.2 GRADIENT OF MAGNETIC SCALAR POTENTIAL	308
9.3 LAPLACE EQUATION FOR MAGNETIC SCALAR POTENTIAL	310
9.4 VECTOR MAGNETIC POTENTIAL	313
9.5 SOLUTION FOR MAGNETIC VECTOR POTENTIAL	316
9.6 MAGNETIC VECTOR POTENTIAL-LINE CURRENT DISTRIBUTION	326
9.7 MAGNETIC VECTOR POTENTIAL-SURFACE CURRENT DISTRIBUTION	327
9.8 MAGNETIC VECTOR POTENTIAL- VOLUME CURRENT DISTRIBUTION	329
9.9 SUMMARY	331
PROBLEMS	332

CHAPTER 10: MAGNETIC MATERIAL MEDIUM

10.0 INTRODUCTION	334
10.1 FORCE ON CONDUCTOR CARRYING CURRENT	335
10.2 FORCE BETWEEN TWO CURRENT LOOPS	338
10.3 MAGNETIC POLARIZATION	341
10.4 BIOT-SAVART'S LAW IN MAGNETIC MEDIUM	349
10.5 MAGNETIC FIELD LINES AND DENSITY	354
10.6 VECTOR POTENTIAL FOR MAGNETIC MEDIUM	356
10.7 BOUNDARY CONDITIONS	359

	PAGE
10.8 SUMMARY	365
PROBLEMS	367

CHAPTER 11: SOLUTION TO MAGNETOSTATIC FIELD PROBLEMS

11.0 INTRODUCTION	369
11.1 INFINITELY LARGE PARALLEL PLATES	372
11.2 INFINITELY LONG COAXIAL CYLINDERS	374
11.3 MAGNETIC FIELD DUE TO CIRCULAR LOOP	375
11.4 IMAGE PRINCIPLE	378
PROBLEMS	382

CHAPTER 12: MAXWELL'S EQUATIONS IN TIME DOMAIN

12.0 INTRODUCTION	384
12.1 CHARGE DENSITY DISTRIBUTIONS	385
12.2 CONTINUITY EQUATION	392
12.3 FARADAY'S LAW	394
12.4 MAXWELL'S FIRST EQUATION	398
12.5 MAXWELL'S SECOND EQUATION	403
12.6 SUMMARY OF ELECTROMAGNETIC FIELD EQUATIONS	407
12.7 ELECTROMAGNETIC BOUNDARY CONDITIONS	411
12.8 POWER AND ENERGY STORED	423
12.9 SUMMARY	427
PROBLEMS	428
	 12.1 CHARGE DENSITY DISTRIBUTIONS 12.2 CONTINUITY EQUATION 12.3 FARADAY'S LAW 12.4 MAXWELL'S FIRST EQUATION 12.5 MAXWELL'S SECOND EQUATION 12.6 SUMMARY OF ELECTROMAGNETIC FIELD EQUATIONS 12.7 ELECTROMAGNETIC BOUNDARY CONDITIONS 12.8 POWER AND ENERGY STORED 12.9 SUMMARY

CHAPTER 13: TIME DOMAIN SOLUTION

13.0	INTRODUCTION	430
13.1	WAVE EQUATION	431
13.2	SOLUTION TO WAVE EQUATION	437
13.3	VECTOR PLANE WAVE FIELDS	446
13.4	PROPERTIES OF PLANE WAVE FIELDS	449
13.5	ONE DIMENSIONAL FIELD PROBLEM	455

	PAGE
13.6 ELECTROMAGNETIC FIELDS IN A LOSSY MEDIUM	468
13.7 SUMMARY	481
PROBLEMS	482

CHAPTER 14: MAXWELL'S EQUATIONS IN FREQUENCY DOMAIN

14.0 INTRODUCTION	484
14.1 FOURIER TRANSFORM DOMAIN	485
14.2 SOURCES IN FREQUENCY DOMAIN	489
14.3 MAXWELL'S FIRST EQUATION	495
14.4 MAXWELL'S SECOND EQUATION	499
14.5 SUMMARY OF ELECTROMAGNETIC FIELD EQUATIONS	502
14.6 ELECTROMAGNETIC BOUNDARY CONDITIONS	505
14.7 POWER AND ENERGY STORED	509
14.8 SUMMARY	515
PROBLEMS	516

CHAPTER 15: FREQUENCY DOMAIN SOLUTION

15.0	INTRODUCTION	518
15.1	HELMHOLTZ EQUATION	519
15.2	SOLUTION TO HELMHOLTZ EQUATION	525
15.3	VECTOR PLANE WAVE FIELDS	530
15.4	ONE DIMENSIONAL FIELD PROBLEM	535
15 5	PROPAGATION CONSTANT	544
15.6	PLANE WAVES IN DIFFERENT MEDIA	546
15.7	DIELECTRIC BOUNDARY - NORMAL INCIDENCE	561
15.8	SUMMARY	570
PROE	BLEMS	572

CHAPTER 16: ANTENNAS AND RADIATION

16.0 INTRODUCTION		574
16.1 ELECTROMAGNETIC	POTENTIALS	575

16.2 SOLUTION FOR POTENTIALS	582
16.3 ELECTRIC DIPOLE FIELDS	592
16.4 MULTIPLE POINT SOURCES	598
16.5 SUMMARY	600
PROBLEMS	601

PAGE

652

658

CHAPTER 17: WAVEGUIDES AND TRANSMISSION LINES

17.0 INTRODUCTION	603
17.1 WAVEGUIDE FIELDS	604
17.2 TRANSMISSION LINE	613
17.3 CIRCUIT MODEL	624
17.4 PROPAGATION CONSTANT	630
17.5 TRANSMISSION LINE PROBLEMS	632
17.6 TRANSVERSE ELECTRIC FIELDS	639
17.7 RECTANGULAR WAVEGUIDE - TE CASE	642
17.8 SUMMARY	649
PROBLEMS	650

11	١D	EX
----	----	----

B	B	L	۱	0	G	R	A	Р	H	Y
μ,	-	-	۰	v	v	••	•••		•••	