Body Sensor Networks

Foreword by Sir Magdi Yacoub

With 274 Figures, 32 in Full Color

Guang-Zhong Yang, PhD Institute of Biomedical Engineering and Department of Computing, Imperial College London, UK

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2005938358

ISBN-10: 1-84628-272-1 ISBN-13: 978-1-84628-272-0

Printed on acid-free paper

© Springer-Verlag London Limited 2006

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.

The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.

Printed in the United States of America (MVY)

987654321

Springer Science+Business Media springer.com

Foreword

Advances in science and medicine are closely linked; they are characterised by episodic imaginative leaps, often with dramatic effects on mankind and beyond. The advent of body sensor networks represents such a leap. The reason for this stems from the fact that all branches of modern medicine, ranging from prevention to complex intervention, rely heavily on early, accurate, and complete diagnosis followed by close monitoring of the results. To date, attempts at doing this consisted of intermittent contact with the individual concerned, producing a series of snapshots at personal, biochemical, mechanical, cellular, or molecular levels. This was followed by making a series of assumptions which inevitably resulted in a distortion of the real picture.

Although the human genome project has shown that we are all "equal", it confirmed the fact that each one of us has unique features at many levels, some of which include our susceptibility to disease and a particular response to many external stimuli, medicines, or procedures. This has resulted in the concept of personalised medicines or procedures promised to revolutionise our approach to healthcare. To achieve this, we need accurate individualised information obtained at many levels in a continuous fashion. This needs to be accomplished in a sensitive, respectful, non-invasive manner which does not interfere with human dignity or quality of life, and more importantly it must be affordable and cost-effective.

This book about body sensor networks represents an important step towards achieving these goals, and apart from its great promise to the community, it will stimulate much needed understanding of, and research into, biological functions through collaborative efforts between clinicians, epidemiologists, engineers, chemists, molecular biologists, mathematicians, health economists, and others. It starts with an introduction by the editor, providing a succinct overview of the history of body sensor networks and their utility, and sets the scene for the following chapters which are written by experts in the field dealing with every aspect of the topic from design to human interaction. It ends with a chapter on the future outlook of this rapidly expanding field and highlights the potential opportunities and challenges.

This volume should act as a valuable resource to a very wide spectrum of readers interested in, or inspired by, this multifaceted and exciting topic.

Professor Sir Magdi Yacoub November 2005 London

Acknowledgments

I would like to express my sincere thanks to all contributing authors to this volume. Without their enthusiasm, support, and flexibility in managing the tight publishing schedule, this book would not have become possible.

I am grateful to members of the pervasive computing team of the Department of Computing, and the Institute of Biomedical Engineering of Imperial College London for all their help throughout the preparation of this book. In particular, I would like to thank Su-Lin Lee, Benny Lo, Surapa Thiemjarus, and Fani Deligianni for all their hard work in providing essential editorial support, as well as being actively involved in the preparation of some of the chapters. My special thanks go to James Kinross and Robert Merrifield for their kind help with the graphical illustrations.

I would also like to thank the editorial staff of Springer, the publisher of this volume. In particular, I am grateful to Helen Callaghan and her colleagues in helping with the editorial matters.

This work would not have been possible without the financial support from the following funding bodies:

- The Department of Trade and Industry, UK
- The Engineering and Physical Sciences Research Council, UK
- The Royal Society
- The Wolfson Foundation

Their generous support has allowed us to establish and promote this exciting field of research -a topic that is so diversified, and yet brings so many challenges and innovations to each of the disciplines involved.

Guang-Zhong Yang November 2005 London

About the Editor

Guang-Zhong Yang, BSc, PhD, FIEE

Chair in Medical Image Computing, Imperial College London, UK

Guang-Zhong Yang received PhD in Computer Science from Imperial College London and served as a senior and then principal scientist of the Cardiovascular Magnetic Resonance Unit of the Royal Brompton Hospital prior to assuming his current full-time academic post at the Department of Computing, Imperial College London. The department was rated 5* at the last RAE (research quality assessment) and has been placed among the top ten departments worldwide by several academic surveys. Professor Yang's main research interests are focussed on medical imaging, sensing, and robotics. He received a number of major international awards including the I.I. Rabi Award from the International Society for Magnetic Resonance in Medicine (ISMRM) and the Research Merit Award from the Royal Society. He is a Fellow of the IEE, Founding Director of the Royal Society/Wolfson Medical Image Computing Laboratory at Imperial College, cofounder of the Wolfson Surgical Technology Laboratory, Chairman of the Imperial College Imaging Sciences Centre, and Director of Medical Imaging, the Institute of Biomedical Engineering, Imperial College London.

Contents

	For	eword
⊢	Ack	nowledg
RIST	Abo	out the E
Ш	Со	ntributor
Ö	List	t of Acro
DU	1	Introdu Omer Az
3IBLIOTHEQUE	1.1 1.2 1.3 1.4	1.2.1 Mo 1.2.2 Mo 1.2.3 Mo Pervasiv Technica 1.4.1 Imp 1.4.2 Bio 1.4.3 End 1.4.4 Sys 1.4.5 Co. 1.4.6 Inte
Ξ		Personal Finding The Futu

For	eword	v
Ack	knowledgments	vii
Abo	About the Editor Contributors	
Cor		
List	t of Acronyms	xxi
1	Introduction Omer Aziz, Benny Lo, Ara Darzi, and Guang-Zhong Yang	1
1.2	Wireless Sensor Networks BSN and Healthcare 1.2.1 Monitoring Patients with Chronic Disease 1.2.2 Monitoring Hospital Patients 1.2.3 Monitoring Elderly Patients	1 4 6 7 9
	Pervasive Patient Monitoring Technical Challenges Facing BSN 1.4.1 Improved Sensor Design 1.4.2 Biocompatibility 1.4.3 Energy Supply and Demand 1.4.4 System Security and Reliability 1.4.5 Context Awareness 1.4.6 Integrated Therapeutic Systems	10 13 13 14 15 16 18 19
1.6 1.7 1.8	Personalised Healthcare Finding the Ideal Architecture for BSN The Future: Going from "Micro" to "Nano" The Scope of the Book	20 22 27 30
Refe	erences	34

2	Biosensor Design and Interfacing	41
	Bhavik A. Patel, Costas A. Anastassiou, and Danny O'Hare	
2.1	Introduction	41
	2.1.1 What Is a Biosensor?	42

2.2	How Do Electrochemical Devices Work?	44
	2.2.1 Potentiometric Devices	45
	2.2.2 Amperometry and Voltammetry	53
2.3	Instrumentation	65
	2.3.1 Potentiometry	65
	2.3.2 Amperometry and Voltammetry	66
	2.3.3 Reference and Counter Electrodes	68
2.4		69
2.5	Biocompatibility	71
	2.5.1 Sensor Fouling	71
	2.5.2 Tissue Damage	73
2.6	Novel Approaches to Handling Sensor Data	73
2.7		80
Ack	nowledgments	82
Refe	erences	82
3	Protein Engineering for Biosensors	89
	Anna Radomska, Suket Singhal, and Tony Cass	
3.1	Introduction	89
	3.1.1 Electrochemical Sensors	90
	3.1.2 Optical Sensors	91
	3.1.3 Gravimetric Sensors	92
	3.1.4 Consuming and Non-Consuming Biosensors	92
3.2	Protein Engineering	93
	3.2.1 The Signal Transduction Module	95
	3.2.2 The Recognition Site Module	97
	3.2.3 Immobilisation Module	100
3.3	Biocompatibility and Implantation	102
3.4	Conclusions	109
Refe	erences	109
4	Wireless Communication	117
	Henry Higgins	
4.1	Introduction	117
4.2	Inductive Coupling	118
4.3	RF Communication in Body	119
4.4	Antenna Design	121
4.5	Antenna Testing	125
	4.5.1 Antenna Impedance and Radiation Resistance Measurement	125
	4.5.2 Quarter Wave Line Impedance Measurement	126
4.6	Matching Network	128
	4.6.1 Transmitter Tuning	128

	4.6.2 The L Network	130
	4.6.3 The π Network	131
	4.6.4 The T and π -L Networks	132
	4.6.5 Parasitic Effects	133
	4.6.6 Network Choice	134
	4.6.7 Radio Frequency Losses in Components and Layout Issues	135
	4.6.8 Receiver Tuning	135
	4.6.9 Base Station Antennas	136
	Propagation	136
4.8	Materials	137
	Environment	138
4.10	External Transceiver (Base Station)	138
4.11	Power Considerations	139
	4.11.1 Battery Challenges	140
4.12	Defibrillation Pulse	141
4.13	Link Budget	142
4.14	Conclusions	142
Refe	prences	143
5	Natural Tanalasian Communication Protocols	
5	Network Topologies, Communication Protocols, and Standards	145
		145
	Javier Espina, Thomas Falck, and Oliver Mülhens	
5.1	Network Topologies	145
5.2	Body Sensor Network Application Scenarios	148
	5.2.1 Stand-Alone Body Sensor Networks	148
	5.2.2 Global Healthcare Connectivity	149
	5.2.3 Pervasive Sensor Networks	150
5.3	Wireless Personal Area Network Technologies	152
	5.3.1 Overview	152
	5.3.2 The Wireless Regulatory Environment	153
	5.3.3 Wireless Communication Standards	155
	5.3.4 IEEE 802.15.1: Medium-Rate Wireless Personal Area Networks	155
	5.3.5 IEEE P802.15.3: High-Rate Wireless Personal Area Networks	158
	5.3.6 IEEE 802.15.4: Low-Rate Wireless Personal Area Networks	160
	5.3.7 ZigBee	164
	5.3.8 Comparison of Technologies	168
5.4	Practical Experiences with IEEE 802.15.4	169
5.5	Healthcare System Integration	174
	5.5.1 Existing Interoperability Standards	174
	5.5.2 Wireless Interoperability Standards Under Development	176
5.6	Conclusions	177

6	Energy Scavenging	183
	Eric Yeatman and Paul Mitcheson	
6.1	Introduction	183
0.1	6.1.1 Sensor Node Power Requirements	184
	6.1.2 Batteries and Fuel Cells for Sensor Nodes	185
	6.1.3 Ambient Energy Sources	186
6.2	Architectures for Inertial Energy Scavenging	187
0.2	6.2.1 Energy Extraction Mechanisms for Inertial Generators	187
	6.2.2 Performance Limits	191
6.3	Fabrication and Testing	195
0.0	6.3.1 Device Fabrication and Structure	195
	6.3.2 Device Testing	197
6.4	Module Design and Simulation	200
0	6.4.1 System Modelling	200
	6.4.2 Integrated Simulation	204
6.5	Power Electronics and System Effectiveness	205
	6.5.1 Power Electronics Requirements and Trade-Offs	205
	6.5.2 Semiconductor Device Design	209
	6.5.3 Coherent Simulation	211
6.6	Discussion and Conclusions	213
	6.6.1 What Is Achievable in Body-Sensor Energy Scavenging?	213
	6.6.2 Future Prospects and Trends	215
Ref	erences	216
7	Towards Ultra-Low Power Bio-Inspired Processing	219
	Leila Shepherd, Timothy G. Constandinou, and Chris Toumazou	
7.1	Introduction	219
7.2	Bio-Inspired Signal Processing	220
7.3	Analogue vs Digital Signal Processing	221
	7.3.1 Quantised Data/Time vs Continuous Data/Time	221
	7.3.2 Analogue/Digital Data Representation	222
	7.3.3 Linear Operations	223
	7.3.4 Non-Linear Operations	224
	7.3.5 Hybrid System Organisation	224
7.4	CMOS-Based Biosensors	225
	7.4.1 Ion-Sensitive Field-Effect Transistor (ISFET)	227
	7.4.2 ISFET-Based Biosensors	229
	7.4.3 Towards Biochemically Inspired Processing with ISFETs	230
7.5	Applications of Ultra-Low Power Signal Processing for BSN	234
Ref	erences	236

8	Multi-Sensor Fusion	239
	Guang-Zhong Yang and Xiaopeng Hu	
8.1	Introduction	239
	8.1.1 Information Interaction	240
	8.1.2 Levels of Processing	242
8.2	Direct Data Fusion	242
	8.2.1 Optimal Averaging for Sensor Arrays	243
	8.2.2 Source Recovery	246
8.3	Feature-Level Fusion	252
	8.3.1 Feature Detection	252
	8.3.2 Distance Metrics	253
	8.3.3 Instance-Based Learning	254
	8.3.4 Distance-Based Clustering	255
8.4	Dimensionality Reduction	258
	8.4.1 Multidimensional Scaling (MDS)	259
	8.4.2 Locally Linear Embedding (LLE)	260
	8.4.3 Isometric Mapping (Isomap)	261
8.5	Feature Selection	262
	8.5.1 Feature Relevance	264
	8.5.2 Feature Relevance Based on ROC Analysis	266
	8.5.3 Feature Selection Based on ROC Analysis	271
8.6	Decision-Level Fusion	274
8.7	Conclusions	278
Ref	erences	281
9	Context-Aware Sensing	287
	Surapa Thiemjarus and Guang-Zhong Yang	
9.1	Introduction	287
9.2	Application Scenarios	289
9.3	Preprocessing for Context Sensing	291
	9.3.1 Information Granularity	291
	9.3.2 Sources of Signal Variations	292
	9.3.3 Data Normalisation	293
9.4	Context Recognition Techniques	294
	9.4.1 Hidden Markov Models (HMMs)	294
	9.4.2 Artificial Neural Networks (ANNs)	302
9.5	Spatio-Temporal Self-Organising Maps (STSOMs)	306
	9.5.1 The Basic Structure of the STSOM	307
	9.5.2 The Use of Multi-Resolution for Improved Class Separation	312
	9.5.3 STSOM Algorithm Design	315
	9.5.4 STSOM for Context-Aware Sensing	320
9.6		323
Ref	erences	326

10 Autonomic Sensing	333
Guang-Zhong Yang, Benny Lo, and Surapa Thiemjarus	
10.1 Introduction	333
10.2 Autonomic Sensing	334
10.3 Fault Detection and Self-Healing	336
10.3.1 Belief Networks	337
10.3.2 Belief Propagation Through Message Passing	339
10.4 Routing and Self-Organisation	344
10.5 Security and Self-Protection	348
10.5.1 Bacterial Attacks	350
10.5.2 Virus Infection	356
10.5.3 Secured Protocols	358
10.5.4 Self-Protection	362
10.6 Conclusions	365
References	366
11 Wireless Sensor Microsystem Design:	
A Practical Perspective	373
David R. S. Cumming, Paul A. Hammond, Lei Wang,	
Jonathan M. Cooper, and Erik A. Johannessen	
11.1 Introduction	373
11.2 The Diagnostic Capsule	375
11.3 Applications for Wireless Capsule Devices	376
11.3.1 Human Medicine	376
11.3.2 Animal Applications	378
11.4 Technology	379
11.4.1 Design Constraints	379
11.4.2 Microsystem Design	379
11.4.3 Integrated Sensors	381
11.5 Electronics System Design	385
11.5.1 Analogue Electronic Front-End Acquisition Design	386
11.5.2 Digital System Design	386
11.6 The Wireless Environment	388
11.7 Power Sources	390
11.8 Packaging	391
11.9 Conclusions	392
References	393

12 Conclusions and Future Outlook *Guang-Zhong Yang* 399

Appendix A Wireless Sensor Development Platforms Benny Lo and Guang-Zhong Yang	403
A.1 Introduction	403
A.2 System Architecture	403
A.2.1 Processor	404
A.2.2 Wireless Communication	407
A.2.3 Memory	410
A.2.4 Sensor Interface	411
A.2.5 Power Supply	414
A.2.6 Operating System	415
A.3 Conclusions	418
References	418
Appendix B BSN Development Kit and Programming Guide Benny Lo and Guang-Zhong Yang	423
B.1 Introduction	423
B.2 BSN Architectural Design	423
B.2.1 Microcontroller	425
B.2.2 Radio Transceiver	428
B.2.3 Flash Memory	437
B.2.4 Board Connector	438
B.2.5 Antenna	440
B.3 BSN Development Kit	441
B.3.1 BSN Nodes	442
B.3.2 USB Programmer	442
B.3.3 Sensor Board	443 447
B.3.4 Battery Board	447
<i>B.3.5 Prototype Board</i> B.4 TinyOS	449
B.4.1 nesC	452
B.4.2 Execution Model	458
B.4.3 Hardware Abstraction	460
B.4.4 TOSSIM	461
B.4.5 Deluge – TinyOS Network Programming	466
B.5 BSN Programming Guide	468
B.5.1 Programming Environment	468
B.5.2 Installation Instructions	469
B.5.3 BSN Node Programming	469
B.6 Conclusions	478
References	478

Index

BIBLIOTHEQUE DU CERIST