
Parallel Computing 114 (2022) 102984

Available online 3 November 2022
0167-8191/© 2022 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Efficient parallel branch-and-bound approaches for exact graph edit distance
problem
Adel Dabah a, Ibrahim Chegrane a,b,∗, Saïd Yahiaoui a, Ahcene Bendjoudi a,
Nadia Nouali-Taboudjemat a

a CERIST Research Center on Scientific and Technical Information, Algiers, Algeria
b CoBIUS Lab, Department of Computer Science, University of Sherbrooke Qc, Canada

A R T I C L E I N F O

Dataset link: https://github.com/chegrane/ged
_parallel/

Keywords:
Parallel branch-and-bound
Graph matching
Graph edit distance

A B S T R A C T

Graph Edit Distance (GED) is a well-known measure used in the graph matching to measure the similar-
ity/dissimilarity between two graphs by computing the minimum cost of edit operations needed to transform
one graph into another. This process, Which appears to be simple, is known NP-hard and time consuming
since the search space is increasing exponentially. One way to optimally solve this problem is by using Branch
and Bound (B&B) algorithms, Which reduce the computation time required to explore the whole search
space by performing an implicit enumeration of the search space instead of an exhaustive one based on a
pruning technique. nevertheless, They remain inefficient when dealing with large problem instances due to
the impractical running time needed to explore the whole search space. To overcome this issue, We propose in
this paper three parallel B&B approaches based on shared memory to exploit the multi-core CPU processors:
First, a work-stealing approach where several instances of the B&B algorithm explore a single search tree
concurrently achieving speedups up to 24× faster than the sequential version. Second, a tree-based approach
where multiple parts of the search tree are explored simultaneously by independent B&B instances achieving
speedups up to 28×. Finally, Due to the irregular nature of the GED problem, two load-balancing strategies
are proposed to ensure a fair workload between parallel processes achieving impressive speedups up to 300×.
all experiments have been carried out on well-known datasets

1. Introduction

Graph Edit Distance (GED) approach is a well-known technique
used in graph matching to measure the minimum distance between
two graphs. The goal of the GED is to compute the amount of dis-
similarity between two graphs. In other words, it represents the cost
of the best set of edit operations needed to transform one graph
into another [1]. The allowed operations are insertion, deletion, and
substitution, which are applied on vertices and edges. This problem
is known to be very challenging due to its NP-hardness nature [2],
which means that the time complexity of computing the minimum
distance between two graphs increases exponentially with the number
of vertices. The importance of the GED comes from its multitude of use
cases. It can be used to find exact and also inexact matching, where
some errors are tolerated. Moreover, the GED can be used in various
areas [3], especially in areas related to pattern recognition, such as,
handwriting recognition [4–6], person identification and authentica-
tion (example: fingerprint recognition) [7], documents analysis [5,8,9],

∗ Corresponding author at: CoBIUS Lab, Department of Computer Science, University of Sherbrooke Qc, Canada.
E-mail addresses: adabah@cerist.dz (A. Dabah), ibrahim.chegrane@usherbrooke.ca (I. Chegrane), syahiaoui@cerist.dz (S. Yahiaoui), abendjoudi@cerist.dz

(A. Bendjoudi), nnouali@cerist.dz (N. Nouali-Taboudjemat).

and in graph database search [10]. It can also be found in machine
learning, nearest-neighbor classification, and in data mining area [5].

To compute optimally the GED between two graphs, often A-
Star [11] based search technique is used in the literature [3]. However,
this latter needs huge memory resources, making it impossible to use
for large graphs. The Branch and Bound (B&B) algorithms are well-
known techniques for optimally solving optimization problems via an
intelligent enumeration of the search space. This method models the
search space as a tree using two components: branching and bounding.
The branching is a recursive process that divides the search space of
a given problem into several smaller sub-problems, which are treated
the same way until solutions are found. After the branching process, the
bounding operator evaluates the ability of each generated sub-problem
to contain good solutions. The B&B algorithm uses several techniques
(elimination and selection) to avoid exploring non-promising sub-
problems (branches) and accelerate the search process. Due to the
complexity of the GED problem, which is NP-hard [2] for general

https://doi.org/10.1016/j.parco.2022.102984
Received 18 September 2021; Received in revised form 16 July 2022; Accepted 27 October 2022

http://www.elsevier.com/locate/parco
http://www.elsevier.com/locate/parco
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
https://github.com/chegrane/ged_parallel/
mailto:adabah@cerist.dz
mailto:ibrahim.chegrane@usherbrooke.ca
mailto:syahiaoui@cerist.dz
mailto:abendjoudi@cerist.dz
mailto:nnouali@cerist.dz
https://doi.org/10.1016/j.parco.2022.102984
https://doi.org/10.1016/j.parco.2022.102984
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2022.102984&domain=pdf

