
1752 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 4, AUGUST 2020

A Scalable, High-Performance, and Fault-Tolerant
Network Architecture for Distributed

Machine Learning
Songtao Wang , Dan Li, Yang Cheng, Jinkun Geng , Graduate Student Member, IEEE, Yanshu Wang,

Shuai Wang, Shutao Xia , and Jianping Wu, Fellow, IEEE

Abstract— In large-scale distributed machine learning (DML),
the network performance between machines significantly impacts
the speed of iterative training. In this paper we propose BML,
a scalable, high-performance and fault-tolerant DML network
architecture on top of Ethernet and commodity devices. BML
builds on BCube topology, and runs a fully-distributed gradient
synchronization algorithm. Compared to a Fat-Tree network
with the same size, a BML network is expected to take much
less time for gradient synchronization, for both low theoretical
synchronization time and its benefit to RDMA transport. With
server/link failures, the performance of BML degrades in a
graceful way. Experiments of MNIST and VGG-19 benchmarks
on a testbed with 9 dual-GPU servers show that, BML reduces the
job completion time of DML training by up to 56.4% compared
with Fat-Tree running state-of-the-art gradient synchronization
algorithm.

Index Terms— Distributed machine learning, gradient
synchronization time, scalability, fault-tolerant.

I. INTRODUCTION

MACHINE learning (ML) has become a core service
in large companies [18]. The scale of modern ML

training can be huge [5], [9], [21]. From our survey of a large
internet company, a CTR (click through rate) estimation task
trains a model of >100 billion features with >1PB training
data. Given the memory size and processing capability of
today’s commodity machines, it is inevitable to run distributed
machine learning (DML) on multiple machines. For instance,
the internet company under survey currently uses several
hundreds of dedicated machines to carry out the training for
CTR estimation. With the ever-increasing training data and
model sizes, it is expected that even larger-scale DML will
appear in the near future.

Manuscript received July 24, 2018; revised April 7, 2019 and December 23,
2019; accepted April 30, 2020; approved by IEEE/ACM TRANSACTIONS ON

NETWORKING Editor M. Andrews. Date of publication June 19, 2020; date
of current version August 18, 2020. This work was supported in part by
the National Key Research and Development Program of China under Grant
2019YFB1802600, in part by the Research and Development Program in Key
Areas of Guangdong Province under Grant 2018B010113001, and in part by
the National Natural Science Foundation of China under Grant 61772305 and
Grant 61672499. Some preliminary results were published in Neurips 2018.
In this journal article, we add the fault tolerance part, add more experiments
and make the work more complete. (Corresponding author: Dan Li.)

Songtao Wang, Dan Li, Yang Cheng, Jinkun Geng, Yanshu Wang,
Shuai Wang, and Jianping Wu are with the Department of Computer Sci-
ence and Technology, Tsinghua University, Beijing 100084, China (e-mail:
tolidan@mail.tsinghua.edu.cn).

Shutao Xia is with Tsinghua Shenzhen International Graduate School,
Tsinghua University, Shenzhen 518055, China.

Digital Object Identifier 10.1109/TNET.2020.2999377

A typical ML training task trains a model iteratively until
the parameters converge. In the widely-used gradient descent
optimization method, in each iteration the algorithm uses
a minibatch of training data to compute a gradient, which
decides the changes to make to the parameters trained by the
previous iteration. In DML, every machine iteratively trains
a sub-minibatch (sub-minibatch means breaking a minibatch
of input data into multiple pieces and each machine uses
one piece.) of data and synchronizes the gradients with other
machines. Ideally, more machines help reduce the training
time. However, it has been shown that, when more machines
are used in DML, we have to set a smaller sub-minibatch
size per machine, so as to keep the aggregated minibatch
over all the machines with a reasonable size. Otherwise,
the large aggregated minibatch may cause the training to
quickly converge to a worse model. For instance, a recent
work from Facebook discloses that their translation service
cannot currently train on large minibatches without degrading
model quality [18].

A side effect of smaller sub-minibatch size per machine in
larger-scale DML is the break of computation/communication
balance. For example, an experiment from Amazon shows
that [27], if the batch size on a GPU is 16, the processing
time per batch stays stable from 1 GPU to 128 GPUs;
while if the batch size on a GPU is 2, the processing time
per batch under 128 GPUs increases by more than 6 times
compared with the time per batch under a single GPU, because
of the dominating communication cost. Therefore, in order
to run DML in large scale, we need to carefully design
the network with minimized communication overhead among
machines.

We have the following requirements for a DML network.
First, the network can extend to large scale based on com-
modity devices. In particular, IP/Ethernet is assumed as the
underlying network protocol suite. Second, the network can
achieve as low gradient synchronization time (GST) as pos-
sible. The GST is determined by the topology characteris-
tic, gradient synchronization algorithm as well as the cost
of transport protocols. Third, the network should be fault-
tolerant. With server/link failures, we expect the training
performance gracefully degrades, instead of steeply degrades
or even crashes. Existing DML network architectures cannot
meet all the requirements above. The Fat-Tree network [7]
running state-of-the-art parameter server (PS) algorithm has

1063-6692 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2073-8235
https://orcid.org/0000-0002-6574-8349
https://orcid.org/0000-0002-8639-982X

