

Nonlinear Analysis 38 (1999) 827-867



## Local T-sets and degenerate quasilinear elliptic bilateral problems with an $L^1$ -datum

Youcef Atik

Département de Mathématiques, Ecole Normale Supérieure, B.P. 92, 16050 Kouba, Algiers, Algeria

Received 24 July 1996; accepted 23 October 1997

*Keywords*: T-sets; Nonlinear elliptic bilateral problems; Degenerate inequations; Renormalized solutions;  $L^1$ -datum; Uniqueness and stability theorems

## 1. Introduction

Let p > 1 be a real number,  $\Omega$  an arbitrary open subset of  $\mathbb{R}^N$ , and S a compact subset of  $\overline{\Omega}$  whose N-dimensional Lebesgue measure is zero; in the sequel, S will be called singularity. Let a and b be two nonnegative functions on  $\overline{\Omega}$  which might degenerate (i.e., vanish or go to infinity) on S. Let  $\psi$  and  $\Psi$  be two measurable functions on  $\Omega$ with  $\psi \leq \Psi$  a.e. in  $\Omega$  and  $\Psi \in L^{\infty}(\Omega)$ . Put

$$K(\psi, \Psi) = \{ v : \Omega \to \mathbb{R} \text{ measurable } | \psi \le v \le \Psi \text{ a.e. in } \Omega \}$$

and

$$\mathscr{A}u \doteq -\operatorname{div}(\hat{a}(x, u, \nabla u)) + b(x)|u|^{\gamma - 1}u \tag{1}$$

where  $\hat{a}: \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N$  is a Carathéodory function such that  $\hat{a}/a$  satisfies the general conditions of Leray-Lions [15] and  $\gamma$  a real number with  $p-1 < \gamma < (N/(N-p))(p-1)$  if  $1 and <math>p-1 < \gamma < \infty$  otherwise.

We will study the questions of existence and uniqueness of functions u belonging to  $K(\psi, \Psi)$  satisfying, in a sense which will be precised later, the inequality

$$\mathcal{A}u \ge \mu \quad \text{on } K(\psi, \Psi)$$
 (2)

where  $\mu$  is a given function in  $L^1(\Omega)$ .

In the nondegenerate case, for  $\Omega$  bounded and  $p > p_{c_0} = 2 - 1/N$ , unilateral problems associated with quasilinear operators and irregular data were considered by many authors, cf., for instance, Boccardo and Gallouët [9], for the p-Laplacian and  $L^1(\Omega)$ -data,